Skip to content

Research Physical Scientist

Biogeochemistry, Atmospheric Chemistry, and Ecosystems Division

Curriculum vitae


Research Focus Areas:

  • Quantifying Earth system feedbacks on equilibrium climate sensitivity
  • Effects of chemistry and aerosols on climate
  • Role of the deep ocean on climate
  • Climate-carbon cycle variability and response to forcings over the last millennium
  • Ocean circulation, climate, and ocean biogeochemistry impacts from the Central American Seaway closure
  • Terrestrial carbon impacts from historical land-use change


Contact Information:

phone (609) 452-6563

Lori T. Sentman

My research involves developing and using comprehensive Earth System Models (ESMs) and slab ocean mixed-layer models (SOMs) to:

  • identify and elucidate physical, biogeochemical, and ecological mechanisms and their impact on climate and climate sensitivity
  • assess and understand climate variability and Earth system predictability on seasonal to multi-millennial time scales
  • evaluate past, present, and future impacts of natural and anthropogenic activity on the Earth system

Research Highlights


  • Dunne, J. P., et al. (2020). The GFDL Earth System Model version 4.1 (GFDL ESM4.1): Overall coupled model description and simulation characteristics. J. Adv. Model., 12,
  • Sentman, L.T., J.P. Dunne, R.J. Stouffer, J.P. Krasting, J.R. Toggweiler, A.J. Broccoli (2018). The Mechanistic Role of the Central American Seaway in a GFDL Earth System Model. Part 1: Impacts on Global Ocean Mean State and Circulation. Paleoceanography and Paleoclimatology, 33(7),
  • Sentman, L. (2018). How the Central American Seaway alters large-scale ocean circulation, climate and marine biogeochemistry, (Doctoral dissertation).
    Retrieved from Rutgers University Community Repository
    ( New Brunswick, NJ: Rutgers University.
  • Dunne, J. P., J. John, E. Shevliakova, R.J. Stouffer, J.P. Krasting, S. Malyshev, et al. (2013). GFDL’s ESM2 global coupled climate-carbon Earth System Models Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26(7),
  • Dunne, J.P., J. John, A. Adcroft, S.M. Griffies, R.W. Hallberg, E. Shevliakova, et al. (2012). GFDL’s ESM2 global coupled climate-carbon Earth System Models Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25(19),
  • Sentman, L.T., E. Shevliakova, R.J. Stouffer, and S. Malyshev (2011). Time scales of terrestrial carbon response related to land-use application: Implications for initializing an earth system model. Earth Interactions, 15(30),
  • Shevliakova, E., S.W. Pacala, S. Malyshev, P.C.D. Milly, and L.T. Sentman (2009). Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochemical Cycles, 23, GB2022, [Abstract PDF].  Also appears in Nature Reports Climate Change | Vol 5 | April 2009.


  • Guang, Z., N.L. Abraham, A.T. Archibald, S.E. Bauer, M. Deushi, L.K. Emmons, et al. (2022). Attribution of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6 models.
  • Allen, R., L.W. Horowitz, V. Naik, N. Oshima, F.M. O’Connor, S. Turnock, et al. (2021). Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Env. Res. Lett., 16(3),
  • Allen, R.J., S. Turnock, P. Nabat, D. Neubauer, Ü. Lohmann, D. Olivie, et al. (2020). Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chem. Phys., 20(16),
  • Morgenstern, O., F.M. O’Connor,  B. Johnson, G. Zeng, J.P. Mulcahy, J. Williams, et al. (2020). Reappraisal of the Climate Impacts of Ozone-Depleting Substances. Geophys. Res. Lett., 47(20),
  • Stevenson, D.S., A. Zhao, V. Naik, F.M. O’Connor, S. Tilmes, G. Zeng, et al. (2020). Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmospheric Chem. Phys., 20(21),


  • Chemke, R., L. Zanna, C. Orbe, L.T. Sentman, and L.M. Polvani (2022). The future intensification of the North Atlantic winter storm track: the key role of dynamic ocean coupling. Journal of Climate, 35(8),
  • Dunne, J. P., et al. (2020). Comparison of equilibrium climate sensitivity estimates from slab ocean, 150-year, and longer simulations. Geophys. Res. Lett., 47, e2020GL088852.
  • Krasting, J.P., R.J. Stouffer, S.M. Griffies, R.W. Hallberg, S.L. Malyshev, B.L. Samuels, and L.T. Sentman (2018). Role of Ocean Model Formulation in Climate Response Uncertainty. J. Climate, 319313–9333, 
  • Ding, Y., G. Chepurin, G. Stenchikov, A. Robock, L.T. Sentman, and J. Krasting (2014). Ocean Response to Volcanic Eruptions in Coupled Model Intercomparison Project 5 (CMIP5) Simulations. J. Geophys. Res. – Oceans, 119(9),
  • Anderson, J. L., et al. (2004). The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. J. Climate, 17(24), 46414673.

Outreach & DEI Highlights

  • US Dept. of Commerce Office of Atmospheric Research EEO/Diversity Award – Exemplary Service, Individual award recipient
  • Scientific mentor to Rebecca Monge – Top 40 finalist 2021 Regeneron Science Talent Search
  • Invited panelist and reviewer – Rider University Independent Scholarship and Creative Activities Presentations Day
  • Invited presenter – Young Women’s Conference, Princeton Plasma Physics Laboratory
  • Coordinator and visiting scientist – MJ Elementary School Science Fair