Skip to content

Research Highlight

Rising temperatures increase importance of oceanic evaporation as a source for continental precipitation

October 1, 2019 – In many parts of the world, water resources for humans and ecosystems are heavily dependent on precipitation. Terrestrial precipitation is fed by moisture originating as evaporation from oceans and from recycling of water evaporated from continental sources. Understanding the vulnerability of regional precipitation to changing climatic conditions and to changing land cover conditions is of critical importance to society.

Research Highlight

Hurricane Model Development at GFDL: A Collaborative Success Story from a Historical Perspective

September 6, 2019 – In 1970, a new hurricane project was established at GFDL to perform basic hurricane research using numerical modeling. Within a few years, this pioneering research had led to the development of a new hurricane model. As the reputation of the model grew, GFDL was approached in 1986 by the director of the National Meteorological Center to establish a collaboration between the two Federal organizations to transition the model into an operational modeling system.


More events

Research Highlight

Skillful Prediction of Monthly North Atlantic Major Hurricane Activity with Two-way Nesting

August 27, 2019 – Existing hurricane prediction systems fall into two categories: hurricane track and intensity predictions on a weekly timescale; and the prediction of hurricane activity on a seasonal timescale. Substantial progress has been made in improving the predictions on the two distinct timescales in the past decade. However, the prediction of hurricane activity on a subseasonal timescale (from two weeks to two months) has not shown much advancement. Credible subseasonal hurricane predictions can have significant socioeconomic impacts, but are challenging.

Research Highlight

Predicting the evolution of the 2014-2016 California Current System marine heatwave from an ensemble of coupled global climate forecasts

August 26, 2019 – The factors contributing to heatwaves have been the subject of intensive research for many decades. The urgency of this work arises from the steep toll that heatwaves impose on public health, and the prospect that climate change may increase the frequency and severity of these events. Heatwaves also occur beneath the waves, where they can severely affect living marine resources upon which our coastal economies and food supply relies.

Research Highlight

Tropical Cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution and background climate changes

Tropical Cyclone Idai

August 16, 2019 – This research explored the sensitivity of large-scale surface climate and tropical cyclone activity to a doubling of CO2, using three coupled global climate models that span a range of horizontal atmospheric and land resolutions. The authors investigated the impact of resolution changes in the atmosphere within a family of coupled global climate models with identical ocean and sea ice components, and whose atmospheric configurations differ only in their horizontal resolution (~200km, ~50km, and ~25km).

Research Highlight

A spring barrier for regional predictions of summer Arctic sea ice

Arctic sea ice

August 1, 2019 – A central goal of the sea ice research community is to assess the ability of climate models to accurately predict Arctic sea ice. A broad range of stakeholders have a pressing need for regional forecasts. Previous studies assessing sea ice prediction skill suggest that some regions in the Arctic have a “prediction skill barrier” in the spring season, where predictions of summer sea ice made prior to May are substantially less accurate than predictions made after May. However, this barrier has only been documented in a few climate models. This study employs a simple model that uses sea ice volume to predict summer sea ice area.


New engine is driving NOAA’s flagship weather forecast model

June 12, 2019 – As NOAA launches a major upgrade in its flagship weather forecast model this week, an important part is the Global Forecast System’s new dynamical core. The story of how scientists developed the dynamical core or engine of the model is a view into how scientific invention works.

Research to Operations

New Forecast Product to Provide 3- to 4-Week Temperature and Precipitation Outlooks

Predicting the weather beyond two weeks in advance is a daunting challenge, but a team of scientists led by Nat Johnson (Associate Research Scholar, Princeton University/Geophysical Fluid Dynamics Laboratory Cooperative Institute for Climate Science), as part of a Modeling, Analysis, Predictions, and Projections (MAPP) Program-Climate Test Bed (CTB) project successfully developed and transitioned a forecast tool into operations that provides guidance to NOAA Climate Prediction Center (CPC) forecasters for their operational 3-to- 4 week temperature outlooks.