Skip to content

Most Recent GFDL Publications

June – August 2021

  1. Bushuk, M., Winton, M., Haumann, A., Delworth, T. L., Lu, F., Zhang, Y., Jia, L., Zhang, L., Cooke, W. F., Harrison, M. J., Hurlin, W. J., Johnson, N. C., Kapnick, S. B., McHugh, C., Murakami, H., Rosati, A., Tseng, K.-C., Wittenberg, A. T., Yang, X., & Zeng, F. (2021). Seasonal prediction and predictability of regional Antarctic sea ice. Journal of Climate, 34(15), 6207-6233. https://doi.org/10.1175/JCLI-D-20-0965.1.
  2. Dong, W., Zhao, M., Ming, Y., & Ramaswamy, V. (2021). Representation of tropical mesoscale convective systems in a general circulation model: Climatology and response to global warming. Journal of Climate, 34(14). https://doi.org/10.1175/JCLI-D-20-0535.1.
  3. Drenkard, E. J., Stock, C. A., Ross, A. C., Dixon, K. W., Adcroft, A., Alexander, M. A., Balaji, V., Bograd, S. J., Butenschön, M., Cheng, W., Curchitser, E. N., Di Lorenzo, E., Dussin, R., Haynie, A. C., Harrison, M. J., Hermann, A., Hollowed, A. B., Holsman, K., Holt, J., Jacox, M. G.,  Joo Jang, C., Kearney, K. A., Muhling, B. A., Pozo Buil, M., Saba, V. S., Britt Sandø, A., Tommasi, D., & Wang, M. (2021). Next-generation regional ocean projections for living marine resource management in a changing climate. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsab100.
  4. du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. A., & Cheung, W. W. L. (2021). Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Global Change Biology, 27(11). https://doi.org/10.1111/gcb.15576.
  5. Guo, H., Ming, Y., Fan, S., Zhou, L., Harris, L., & Zhao, M. (2021). Two-moment bulk cloud microphysics with prognostic precipitation in GFDL’s Atmosphere Model AM4.0: configuration and performance. Journal of Advances in Modeling Earth Systems, 13(6). http://doi.org/10.1029/2020MS002453.
  6. Harris, L., Chen, X., Putnam, W. M., Zhou, L., & Chen, J.-H. (2021). A Scientific Description of the GFDL Finite-Volume Cubed-Sphere Dynamical Core (Technical Memorandum 2021-001). U.S. National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research, Geophysical Fluid Dynamics Laboratory. https://doi.org/10.25923/6nhs-5897.
  7. Harris, L. (2021). A new semi-Lagrangian finite volume advection scheme combines the best of both worlds. Advances in Atmospheric Sciences, 38, 1608-1609. https://doi.org/10.1007/s00376-021-1181-0.
  8. Marchok, T. (2021). Important factors in the tracking of tropical cyclones in operational models. Journal of Applied Meteorology and Climatology. https://doi.org/10.1175/JAMC-D-20-0175.1.
  9. Meng, J., Martin, R. V., Ginoux, P., et al. (2021). Grid-independent high-resolution dust emissions (v1.0) for chemical transport models: Application to GEOS-Chem (12.5.0). Geoscientific Model Development, 14(7), 4249-4260. https://doi.org/10.5194/gmd-14-4249-2021.
  10. Raghuraman, S. P., Paynter, D. J., & Ramaswamy, V. (2021). Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance. Nature Communications, 12, 4557. https://doi.org/10.1038/s41467-021-24544-4.
  11. Ramaswamy, V., Ming, Y., & Schwarzkopf, M. D. (2021). Forcing of global hydrological changes in the twentieth and twenty-first centuries. In A. Pandey, S. Kumar, & A. Kumar (Eds). Hydrological Aspects of Climate Change (pp. 61-76). Springer, Singapore. https://doi.org/10.1007/978-981-16-0394-5.
  12. Tseng, K.-C., Johnson, N. C., Maloney, E., Barnes, E. A., & Kapnick, S. B. (2021). Mapping large-scale climate variability to hydrological extremes: An application of the linear inverse model to subseasonal prediction. Journal of Climate. https://doi.org/10.1175/JCLI-D-20-0502.1.
  13. Vecchi, G. A., Landsea, C., Zhang, W., Villarini, G., & Knutson T. R. (2021). Changes in Atlantic major hurricane frequency since the late-19th century. Nature Communications, 12, 4054. https://doi.org/10.1038/s41467-021-24268-5.
  14. Yu, Y. & Ginoux, P. (2021). Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmospheric Chemistry and Physics, 21(11), 8511-8530. https://doi.org/10.5194/acp-21-8511-2021.
  15. Zhang, R., & Thomas, M. (2021). Horizontal circulation across density surfaces contributes substantially to the long-term mean northern Atlantic Meridional Overturning Circulation. Communications Earth and Environment, 2, 112. https://doi.org/10.1038/s43247-021-00182-y.