Clark, Joseph P., Pu Lin, and Spencer A Hill, June 2024: ITCZ response to disabling parameterized convection in global fixed-SST GFDL-AM4 aquaplanet simulations at 50 and 6 km resolutions. Journal of Advances in Modeling Earth Systems, 16(6), DOI:10.1029/2023MS003968. Abstract
As the community increases climate model horizontal resolutions and experiments with removing moist convective parameterizations entirely, it is imperative to understand how these advances affect the InterTropical Convergence Zone (ITCZ). We investigate how the ITCZ responds to deactivating parameterized convection at two resolutions, 50 and 6 km, in fixed sea surface temperature, aquaplanet simulations with the NOAA GFDL AM4 atmospheric model. Disabling parameterized convection at 50 km resolution narrows the ITCZ and increases its precipitation minus evaporation (P–E) maximum by ∼78%, whereas at 6 km resolution doing so widens the ITCZ and decreases its P–E maximum by ∼50%. Using the column-integrated moist static energy budget, we decompose these tropical P–E responses into contributions from changes in atmospheric energy input (AEI), gross moist stability, and gross moisture stratification. At 6 km, the ITCZ weakens due to increased gross moist stability. Disabling the convective parameterization at this finer resolution deepens the circulation, favoring more efficient poleward energy transport out of the deep tropics and reduced precipitation in the core of the ITCZ. Conversely, at 50 km the ITCZ strengthening is primarily driven by AEI, which in turn stems primarily from increased low cloud amount and thus longwave cloud radiative cooling in the Hadley cell subsiding branch. The Hadley circulation overturning intensifies to produce poleward energy fluxes that compensate the longwave cooling, yielding a stronger ITCZ. We further show that the low level diabatic heating profiles over the descending region are instrumental in understanding such diverse responses.
Marine cloud brightening is a proposal to counteract global warming by increasing sea salt aerosol emissions. In theory, this increases the cloud droplet number concentration of subtropical marine stratocumulus decks, increasing cloud brightness and longevity. However, this theoretical progression remains uncertain in coupled climate models, especially the response of liquid water path and cloud fraction to aerosol seeding. We use the GFDL CM4 climate model to simulate marine cloud brightening following the published G4sea-salt protocol, in which sea salt aerosol emissions are uniformly increased over 30 S–30 N in addition to standard forcings from a SSP2-4.5 future warming scenario. The perturbed radiative and cloud responses are temporally stable though spatially heterogeneous, and direct scattering by the added sea salt predominates over changes to cloud reflectance. In fact, feedbacks in the coupled simulation lead to a net warming, rather than cooling, response by clouds.
An idealized aquaplanet moist global atmospheric model with realistic radiative transfer but no clouds and no convective parameterization is found to possess multiple climate equilibria. When forced symmetrically about the equator, in some cases the Inter Tropical Convergence Zone (ITCZ) migrates to an off-equatorial equilibrium position. Mechanism denial experiments prescribing relative humidity imply that radiation-circulation coupling is essential to this instability. The cross-equatorial asymmetry occurs only when the underlying slab ocean is sufficiently deep and the atmosphere's spectral dynamical core is sufficiently coarse (∼T170 or less with our control parameters). At higher resolutions, initializing with an asymmetric state indicates metastability with very slow (thousands of days) return to hemispheric symmetry. There is some sensitivity to the model timestep, which affects the time required to transition to the asymmetric state, with little effect on the equilibrium climate. The instability is enhanced when the planetary boundary layer scheme favors deeper layers or by a prescribed meridional heat transport away from the equator within the slab. The instability is not present when the model is run with a convective parameterization scheme commonly utilized in idealized moist models. We argue that the instability occurs when the asymmetric heating associated with a spontaneous ITCZ shift drives a circulation that rises poleward of the perturbed ITCZ. These results serve as a warning of the potential for instability and non-uniqueness of climate that may complicate studies with idealized models of the tropical response to perturbations in forcing.
How the globally uniform component of sea surface temperature (SST) warming influences rainfall in the African Sahel remains under-studied, despite mean SST warming being among the most robustly simulated and theoretically grounded features of anthropogenic climate change. A prior study using the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) AM2.1 atmospheric general circulation model (AGCM) demonstrated that uniform SST warming strengthens the prevailing northerly advection of dry Saharan air into the Sahel. The present study uses uniform SST warming simulations performed with seven GFDL and ten CMIP5 AGCMs to assess the robustness of this drying mechanism across models and uses observations to assess the physical credibility of the severe drying response in AM2.1.
In all seventeen AGCMs, mean SST warming enhances the free-tropospheric meridional moisture gradient spanning the Sahel and with it the Saharan dry air advection. Energetically, this is partially balanced by anomalous subsidence, yielding decreased precipitation in fourteen of the seventeen models. Anomalous subsidence and precipitation are tightly linked across the GFDL models but not the CMIP5 models, precluding the use of this relationship as the start of a causal chain ending in an emergent observational constraint. For AM2.1, cloud-rainfall covariances generate radiative feedbacks on drying through the subsidence mechanism and through surface hydrology that are excessive compared to observations at the interannual timescale. These feedbacks also act in the equilibrium response to uniform warming, calling into question the Sahel’s severe drying response to warming in all coupled models using AM2.1.
Smyth, Jane E., Spencer A Hill, and Yi Ming, November 2018: Simulated Responses of the West African Monsoon and Zonal‐Mean Tropical Precipitation to Early Holocene Orbital Forcing. Geophysical Research Letters, 45(21), DOI:10.1029/2018GL080494. Abstract
This study seeks to improve our mechanistic understanding of how the insolation changes associated with orbital forcing impact the West African monsoon and zonal‐mean tropical precipitation. We impose early Holocene orbital parameters in simulations with the Geophysical Fluid Dynamics Laboratory AM2.1 atmospheric general circulation model, either with fixed sea surface temperatures, a 50‐m thermodynamic slab ocean, or coupled to a dynamic ocean (CM2.1). In all cases, West African Monsoon rainfall expands northward, but the summer zonal‐mean Intertropical Convergence Zone does not—there is drying near 10°N, and in the slab ocean experiment a southward shift of rainfall. This contradicts expectations from the conventional energetic framework for the Intertropical Convergence Zone location, given anomalous southward energy fluxes in the deep tropics. These anomalous energy fluxes are not accomplished by a stronger Hadley circulation; instead, they arise from an increase in total gross moist stability in the northern tropics.
Brown, Patrick T., Yi Ming, Wenhong Li, and Spencer A Hill, October 2017: Change in the magnitude and mechanisms of global temperature variability with warming. Nature Climate Change, 7(10), DOI:10.1038/nclimate3381. Abstract
Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modelling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual pre-industrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.
Climate models generate a wide range of precipitation responses to global warming in the African Sahel, but all that use the NOAA Geophysical Fluid Dynamics Laboratory AM2.1 model as their atmospheric component dry the region sharply. This study compares the Sahel’s wet season response to uniform 2 K SST warming in AM2.1 using either its default convective parameterization, Relaxed Arakawa-Schubert (RAS), or an alternate, the University of Washington (UW) parameterization, using the moist static energy (MSE) budget to diagnose the relevant mechanisms.
UW generates a drier, cooler control Sahel climate than does RAS and a modest rainfall increase with SST warming rather than a sharp decrease. Horizontal advection of dry, low-MSE air from the Sahara Desert – a leading-order term in the control MSE budget with either parameterization – is enhanced with oceanic warming, driven by enhanced meridional MSE and moisture gradients spanning the Sahel. With RAS, this occurs throughout the free troposphere and is balanced by anomalous MSE import through anomalous subsidence, which must be especially large in the mid-troposphere where the moist static stability is small. With UW, the strengthening of the meridional MSE gradient is mostly confined to the lower troposphere, due in part to comparatively shallow prevailing convection. This necessitates less subsidence, enabling convective and total precipitation to increase with UW, although both large-scale precipitation and precipitation minus evaporation decrease. This broad set of hydrological and energetic responses persists in simulations with SSTs varied over a wide range.
To understand Earth's climate, climate modelers employ a hierarchy of climate models spanning a wide spectrum of complexity and comprehensiveness. This essay, inspired by the World Climate Research Programme's recent ‘Model Hierarchies Workshop’, attempts to survey and synthesize some of the current thinking on climate model hierarchies, especially as presented at the workshop. We give a few formal descriptions of the hierarchy, and survey the various ways it is used to generate, test, and confirm hypotheses. We also discuss some of the pitfalls of contemporary climate modeling, and how the ‘elegance’ advocated for by Held [2005] has (and has not) been used to address them. We conclude with a survey of current activity in hierarchical modeling, and offer suggestions for its continued fruitful development.
Anthropogenically forced changes to the mean and spatial pattern of sea surface temperatures (SSTs) alter tropical atmospheric meridional energy transport throughout the seasonal cycle – in total, its partitioning between the Hadley cells and eddies, and, for the Hadley cells, the relative roles of the mass flux and the gross moist stability (GMS). We investigate this behavior using an atmospheric general circulation model forced with SST anomalies caused by either historical greenhouse gas or aerosol forcing, dividing the SST anomalies into two components: the tropical mean SST anomaly applied uniformly, and the full SST anomalies minus the tropical mean.
For greenhouse gases, the polar-amplified SST spatial pattern partially negates enhanced eddy poleward energy transport driven by mean warming. Both SST components weaken winter Hadley cell circulation and alter GMS. The Northern Hemisphere-focused aerosol cooling induces northward energy flux anomalies in the deep tropics, which manifest partially via strengthened northern and weakened southern Hadley cell overturning. Aerosol-induced GMS changes also contribute to the northward energy fluxes. A simple thermodynamic scaling qualitatively captures these changes, though it performs less well for the greenhouse gas simulations. The scaling provides an explanation for the tight correlation demonstrated in previous studies between shifts in the Intertropical Convergence Zone position and cross-equatorial energy fluxes.
To counteract global warming, there have been suggestions to increase the albedo of low-level marine clouds through the aerosol indirect effects by injecting them with sea salt. However, the full climate response to this geoengineering scheme is currently poorly understood. We simulate cloud seeding in a coupled mixed-layer ocean-atmosphere general circulation model in order to identify the specific physical mechanisms through which seeding could perturb the climate system's radiative balance, and cause temperature and precipitation changes. Seeding stratocumulus decks over three tropical maritime regions in the North Pacific, South Pacific and South Atlantic produces strong local reductions in solar absorption. Over half of the radiative cooling is due to direct scattering of solar radiation by the added sea salt aerosols, while the rest comes from enhancement of the local cloud albedo. The oceanic cooling due to the seeding over the southeastern equatorial Pacific induces a La Ni\~na-like response, with tropical precipitation changes resembling La Ni\~na anomalies and teleconnections occurring in the mid-latitude North Pacific and North America. Additionally, model runs in which only one of the three regions is seeded indicate nonlinearity in the climate response. We identify dynamical and thermodynamical constraints respectively on the temperature and hydrological cycle responses to cloud seeding, but the full response to such geoengineering remains poorly constrained.