Skip to content

Bibliography - Maike Sonnewald

  1. Krasting, John P., Maurizia De Palma, Maike Sonnewald, John P Dunne, and Jasmin G John, April 2022: Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning. Communications Earth and Environment, 3, 91, DOI:10.1038/s43247-022-00419-4.
    Abstract
  2. Irrgang, Christopher, Niklas Boers, and Maike Sonnewald, et al., August 2021: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nature Machine Intelligence, 3, DOI:10.1038/s42256-021-00374-3667-674.
    Abstract
  3. Sonnewald, Maike, and Redouane Lguensat, August 2021: Revealing the impact of global heating on North Atlantic circulation using transparent machine learning. Journal of Advances in Modeling Earth Systems, 13(8), DOI:10.1029/2021MS002496.
    Abstract
  4. Sonnewald, Maike, Redouane Lguensat, Daniel C Jones, Peter D Dueben, Julien Brajard, and V Balaji, July 2021: Bridging observations, theory and numerical simulation of the ocean using machine learning. Environmental Research Letters, 16(7), DOI:10.1088/1748-9326/ac0eb0.
    Abstract
  5. Sonnewald, Maike, Redouane Lguensat, Aparna Radhakrishnan, Zoubero Sayibou, V Balaji, and Andrew T Wittenberg, 2021: Revealing the impact of global warming on climate modes using transparent machine learning and a suite of climate models In ICML 2021 Workshop on Tackling Climate Change with Machine Learning, .
    Abstract

Direct link to page: http://www.gfdl.noaa.gov/bibliography/results.php?author=9681