Bibliography - Arlene M Fiore
- Murray, Lee T., Arlene M Fiore, Drew Shindell, Vaishali Naik, and Larry W Horowitz, October 2021: Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon. Proceedings of the National Academy of Sciences, 118(43), DOI:10.1073/pnas.2115204118.
The hydroxyl radical (OH) sets the oxidative capacity of the atmosphere and, thus, profoundly affects the removal rate of pollutants and reactive greenhouse gases. While observationally derived constraints exist for global annual mean present-day OH abundances and interannual variability, OH estimates for past and future periods rely primarily on global atmospheric chemistry models. These models disagree ± 30% in mean OH and in its changes from the preindustrial to late 21st century, even when forced with identical anthropogenic emissions. A simple steady-state relationship that accounts for ozone photolysis frequencies, water vapor, and the ratio of reactive nitrogen to carbon emissions explains temporal variability within most models, but not intermodel differences. Here, we show that departure from the expected relationship reflects the treatment of reactive oxidized nitrogen species (NOy) and the fraction of emitted carbon that reacts within each chemical mechanism, which remain poorly known due to a lack of observational data. Our findings imply a need for additional observational constraints on NOy partitioning and lifetime, especially in the remote free troposphere, as well as the fate of carbon-containing reaction intermediates to test models, thereby reducing uncertainties in projections of OH and, hence, lifetimes of pollutants and greenhouse gases.
- Baublitz, C B., Arlene M Fiore, Olivia E Clifton, Jingqiu Mao, J Li, G Correa, Daniel M Westervelt, Larry W Horowitz, Fabien Paulot, and A Park Williams, April 2020: Sensitivity of tropospheric ozone over the Southeast USA to dry deposition. Geophysical Research Letters, 47(7), DOI:10.1029/2020GL087158.
Dry deposition (DD) is a major loss process for tropospheric ozone and some reactive nitrogen and carbon precursors. We investigate the response of summertime ozone and its production chemistry over the Southeast United States (USA) to variability in this sink. Turning off DD of oxidized nitrogen, ozone, or all species over the USA in the GFDL AM3 model increases regional mean surface ozone by 5, 18 or 25 ppb, respectively. Additional sensitivity simulations demonstrate that, assuming linearity, surface ozone has a similar sensitivity to ozone DD as to NOx emissions. Trends in ozone production efficiency derived from observed relationships between ozone and precursor oxidation products may not solely reflect precursor emission changes if ozone DD varies (e.g. with meteorology). We conclude that DD variability merits consideration when interpreting observed ozone trends. Quantifying the impact of changes in sinks versus sources will require long‐term DD measurements across the region of interest.
- Clifton, Olivia E., Fabien Paulot, Arlene M Fiore, and Larry W Horowitz, et al., April 2020: Influence of dynamic ozone dry deposition on ozone pollution. Journal of Geophysical Research: Atmospheres, 125(8), DOI:10.1029/2020JD032398.
Identifying the contributions of chemistry and transport to observed ozone pollution using regional‐to‐global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry‐climate model ‐‐ in which the atmosphere and land are coupled through dry deposition ‐‐ to investigate the influence of ozone dry deposition on ozone pollution over northern mid‐latitudes. In our model, deposition pathways are tied to dynamic terrestrial processes, such as photosynthesis and water cycling through the canopy and soil. Small increases in winter deposition due to more process‐based representation of snow and deposition to surfaces reduce hemispheric‐scale ozone through the lower troposphere by 5‐12 ppb, improving agreement with observations relative to a simulation with the standard configuration for ozone dry deposition. Declining snow cover by the end of the 21st century tempers the previously identified influence of rising methane on winter ozone. Dynamic dry deposition changes summer surface ozone by ‐4 to +7 ppb. While previous studies emphasize the importance of uptake by plant stomata, new diagnostic tracking of depositional pathways reveals a widespread impact of nonstomatal deposition on ozone pollution. Daily variability in both stomatal and nonstomatal deposition contribute to daily variability in ozone pollution. 21st‐century changes in summer deposition result from a balance among changes in individual pathways, reflecting differing responses to both high carbon dioxide (through plant physiology versus biomass accumulation) and water availability. Our findings highlight a need for constraints on the processes driving ozone dry deposition to test representation in regional‐to‐global models.
- Clifton, Olivia E., Danica L Lombardozzi, Arlene M Fiore, Fabien Paulot, and Larry W Horowitz, November 2020: Stomatal conductance influences interannual variability and long-term changes in regional cumulative plant uptake of ozone. Environmental Research Letters, 15, DOI:10.1088/1748-9326/abc3f1.
Ambient ozone uptake by plant stomata degrades ecosystem and crop health and alters local-to-global carbon and water cycling. Metrics for ozone plant damage are often based solely on ambient ozone concentrations, overlooking the role of variations in stomatal activity. A better metric is the cumulative stomatal uptake of ozone (CUO), which indicates the amount of ozone entering the leaf over time available to cause physiological damage. Here we apply the NOAA GFDL global earth system model to assess the importance of capturing interannual variations and 21st century changes in surface ozone versus stomatal conductance for regional mean CUO using 20-year time-slice simulations at the 2010s and 2090s for a high-warming climate and emissions scenario. The GFDL model includes chemistry-climate interactions and couples atmospheric and land components through not only carbon, water, and energy exchanges, but also reactive trace gases—in particular, ozone dry deposition simulated by the land influences surface ozone concentrations. Our 20-year time slice simulations hold anthropogenic precursor emissions, well-mixed greenhouse gases, and land use distributions fixed at either 2010 or 2090 values. We find that CUO responds much more strongly to interannual and daily variability in stomatal conductance than in ozone. On the other hand, long-term changes in ozone explain 44%–90% of the annual CUO change in regions with decreases, largely driven by the impact of 21st century anthropogenic NOx emission trends on summer surface ozone. In some regions, increases in stomatal conductance from the 2010s to 2090s counteract the influence of lower ozone on CUO. We also find that summertime stomatal closure under high carbon dioxide levels can offset the impacts of higher springtime leaf area (e.g. earlier leaf out) and associated stomatal conductance on CUO. Our findings underscore the importance of considering plant physiology in assessing ozone vegetation damage, particularly in quantifying year-to-year changes.
- Deser, Clara, Flavio Lehner, Keith B Rodgers, T R Ault, Thomas L Delworth, P DiNezio, and Arlene M Fiore, et al., April 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 10(4), DOI:10.1038/s41558-020-0731-2.
Internal variability in the climate system confounds assessment of human-induced climate change and imposes irreducible limits on the accuracy of climate change projections, especially at regional and decadal scales. A new collection of initial-condition large ensembles (LEs) generated with seven Earth system models under historical and future radiative forcing scenarios provides new insights into uncertainties due to internal variability versus model differences. These data enhance the assessment of climate change risks, including extreme events, and offer a powerful testbed for new methodologies aimed at separating forced signals from internal variability in the observational record. Opportunities and challenges confronting the design and dissemination of future LEs, including increased spatial resolution and model complexity alongside emerging Earth system applications, are discussed.
- Westervelt, Daniel M., N R Mascioli, Arlene M Fiore, A J Conley, Jean-Francois Lamarque, Drew Shindell, G Faluvegi, M Previdi, G Correa, and Larry W Horowitz, March 2020: Local and remote mean and extreme temperature response to regional aerosol emissions reductions. Atmospheric Chemistry and Physics, 20(5), DOI:10.5194/acp-20-3009-2020.
The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol emissions using three coupled chemistry-climate models: NOAA GFDL-CM3, NCAR-CESM1, and NASA GISS-E2. Our approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 emissions) with fourteen individual aerosol emissions perturbation simulations (160–240 years each). We perturb emissions of sulfur dioxide (SO2) and/or carbonaceous aerosol within six world regions and assess the statistical significance of mean and extreme temperature responses relative to internal variability determined by the control simulation and across the models. In all models, the global mean surface temperature response (perturbation minus control) to SO2 and/or carbonaceous aerosol is mostly positive (warming), statistically significant, and ranges from +0.17 K (Europe SO2) to −0.06 K (US BC). The warming response to SO2 reductions is strongest in the US and Europe perturbation simulations, both globally and regionally, with Arctic warming up to 1 K due to a removal of European anthropogenic SO2 emissions alone; however, even emissions from regions remote to the Arctic, such as SO2 from India, significantly warm the Arctic by up to 0.5 K. Arctic warming is the most robust response across each model and several aerosol emissions perturbations. The temperature response in the northern hemisphere mid-latitudes is most sensitive to emissions perturbations within that region. In the tropics, however, the temperature response to emissions perturbations is roughly the same in magnitude from emissions perturbations either within or outside of the tropics. We find that climate sensitivity to regional aerosol perturbations ranges from 0.5 to 1.0 K per W m−2 depending on the region and aerosol composition, and is larger than the climate sensitivity to a doubling of CO2 in two of three models. We update previous estimates of Regional Temperature Potential (RTP), a metric for estimating the regional temperature responses to a regional emissions perturbation that can facilitate assessment of climate impacts with integrated assessment models without requiring computationally demanding coupled climate model simulations. These calculations indicate a robust regional response to aerosol forcing within the northern hemisphere mid-latitudes, regardless of where the aerosol forcing is located longitudinally. We show that regional aerosol perturbations can significantly increase extreme temperatures on the regional scale. Except in the Arctic in the summer, extreme temperature responses largely mirror mean temperature responses to regional aerosol perturbations through a shift of the temperature distributions and are mostly dominated by local rather than remote aerosol forcing.
- Conley, A J., Daniel M Westervelt, Jean-Francois Lamarque, Arlene M Fiore, Drew Shindell, G Correa, G Faluvegi, and Larry W Horowitz, March 2018: Multi-model surface temperature responses to removal of U.S. sulfur dioxide emissions. Journal of Geophysical Research: Atmospheres, 123(5), DOI:10.1002/2017JD027411.
Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multi-century perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200-year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for Northern Hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of [0.0036, 0.0078]. We examine global and regional responses in SO4 burdens, aerosol optical depths (AOD), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (U.S.), the temperature response is spread over the northern hemisphere with amplification of the temperature increase towards the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the effective radiative forcing of U.S. SO2 emissions is found to differ from the models’ sensitivity to radiative forcing of doubled CO2.
- Fiore, Arlene M., E V Fischer, S P Deolal, O Wild, D A Jaffe, J Staehelin, Olivia E Clifton, G P Milly, D J Bergmann, William J Collins, Frank Dentener, R Doherty, B N Duncan, B Fischer, S Gilge, Peter G Hess, and Larry W Horowitz, et al., October 2018: Peroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships. Atmospheric and Climate Sciences, 18(20), DOI:10.5194/acp-18-15345-2018.
Peroxy acetyl nitrate (PAN) is the most important reservoir species for nitrogen oxides (NOx) in the remote troposphere. Upon decomposition in remote regions, PAN promotes efficient ozone production. We evaluate monthly mean PAN abundances from global chemical transport model simulations (HTAP1) for 2001 with measurements from five northern mid-latitude mountain sites (four European and one North American). The multi-model mean generally captures the observed monthly mean PAN but individual models simulate a factor of ~ 4–8 range in monthly abundances. We quantify PAN source-receptor relationships at the measurement sites with sensitivity simulations that decrease regional anthropogenic emissions of PAN (and ozone) precursors by 20 % from North America (NA), Europe (EU), and East Asia (EA). The HTAP1 models attribute more of the observed PAN at Jungfraujoch (Switzerland) to emissions in NA and EA, and less to EU, than a prior trajectory-based estimate. The trajectory-based and modeling approaches agree that EU emissions play a role in the observed springtime PAN maximum at Jungfraujoch. The signal from anthropogenic emissions on PAN is strongest at Jungfraujoch and Mount Bachelor (Oregon, U.S.A.) during April. In this month, PAN source-receptor relationships correlate both with model differences in regional anthropogenic volatile organic compound (AVOC) emissions and with ozone source-receptor relationships. PAN observations at mountaintop sites can thus provide key information for evaluating models, including links between PAN and ozone production and source-receptor relationships. Establishing routine, long-term, mountaintop measurements is essential given the large observed interannual variability in PAN.
- Guo, Jean J., Arlene M Fiore, Lee T Murray, D A Jaffe, and Jordan L Schnell, et al., August 2018: Average versus high surface ozone levels over the continental U.S.A.: Model bias, background influences, and interannual variability. Atmospheric Chemistry and Physics, 18(16), DOI:10.5194/acp-18-12123-2018.
U.S. background ozone (O3) includes O3 produced from anthropogenic O3 precursors emitted outside of the U.S.A., from global methane, and from any natural sources. Using a suite of sensitivity simulations in the GEOS-Chem global chemistry-transport model, we estimate the influence from individual background versus U.S. anthropogenic sources on total surface O3 over ten continental U.S. regions from 2004–2012. Evaluation with observations reveals model biases of +0–19 ppb in seasonal mean maximum daily 8-hour average (MDA8) O3, highest in summer over the eastern U.S.A. Simulated high-O3 events cluster too late in the season. We link these model biases to regional O3 production (e.g., U.S. anthropogenic, biogenic volatile organic compounds (BVOC), and soil NOx, emissions), or coincident missing sinks. On the ten highest observed O3 days during summer (O3_top10obs_JJA), U.S. anthropogenic emissions enhance O3 by 5–11 ppb and by less than 2 ppb in the eastern versus western U.S.A. The O3 enhancement from BVOC emissions during summer is 1–7 ppb higher on O3_top10obs_JJA days than on average days, while intercontinental pollution is up to 2 ppb higher on average vs. on O3_top10obs_JJA days. In the model, regional sources of O3 precursor emissions drive interannual variability in the highest observed O3 levels. During the summers of 2004–2012, monthly regional mean U.S. background O3 MDA8 levels vary by 10–20 ppb. Simulated summertime total surface O3 levels on O3_top10obs_JJA days decline by 3 ppb (averaged over all regions) from 2004–2006 to 2010–2012 in both the observations and the model, reflecting rising U.S. background (+2 ppb) and declining U.S. anthropogenic O3 emissions (−6 ppb). The model attributes interannual variability in U.S. background O3 on O3_top10obs days to natural sources, not international pollution transport. We find that a three-year averaging period is not long enough to eliminate interannual variability in background O3.
- Jaffe, D A., Owen R Cooper, Arlene M Fiore, B H Henderson, G Tonnesen, A G. Russell, D K Henze, Andrew O Langford, Meiyun Lin, and Tom Moore, July 2018: Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa: Science of the Anthropocene, 6, 56, DOI:10.1525/elementa.309.
Ozone (O3) is a key air pollutant that is produced from precursor emissions and has adverse impacts on human health and ecosystems. In the U.S., the Clean Air Act (CAA) regulates O3 levels to protect public health and welfare, but unraveling the origins of surface O3 is complicated by the presence of contributions from multiple sources including background sources like stratospheric transport, wildfires, biogenic precursors, and international anthropogenic pollution, in addition to U.S. anthropogenic sources. In this report, we consider more than 100 published studies and assess current knowledge on the spatial and temporal distribution, trends, and sources of background O3 over the continental U.S., and evaluate how it influences attainment of the air quality standards. We conclude that spring and summer seasonal mean U.S. background O3 (USB O3), or O3 formed from natural sources plus anthropogenic sources in countries outside the U.S., is greatest at high elevation locations in the western U.S., with monthly mean maximum daily 8-hour average (MDA8) mole fractions approaching 50 parts per billion (ppb) and annual 4th highest MDA8s exceeding 60 ppb, at some locations. At lower elevation sites, e.g., along the West and East Coasts, seasonal mean MDA8 USB O3 is in the range of 20–40 ppb, with generally smaller contributions on the highest O3 days. The uncertainty in U.S. background O3 is around ±10 ppb for seasonal mean values and higher for individual days. Noncontrollable O3 sources, such as stratospheric intrusions or precursors from wildfires, can make significant contributions to O3 on some days, but it is challenging to quantify accurately these contributions. We recommend enhanced routine observations, focused field studies, process-oriented modeling studies, and greater emphasis on the complex photochemistry in smoke plumes as key steps to reduce the uncertainty associated with background O3 in the U.S.
- Li, J, Jingqiu Mao, Arlene M Fiore, R C Cohen, John D Crounse, A P Teng, P O Wennberg, B H Lee, Felipe D Lopez-Hilfiker, J A Thornton, Jeff Peischl, I B Pollack, Thomas B Ryerson, P R Veres, J M Roberts, J Andrew Neuman, John B Nowak, G M Wolfe, T F Hanisco, A Fried, H B Singh, Jack E Dibb, Fabien Paulot, and Larry W Horowitz, February 2018: Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 18(3), DOI:10.5194/acp-18-2341-2018.
Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9–12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.
- Rieder, H E., Arlene M Fiore, Olivia E Clifton, G Correa, Larry W Horowitz, and Vaishali Naik, November 2018: Combining model projections with site-level observations to estimate changes in distributions and seasonality of ozone in surface air over the USA. Atmospheric Environment, 193, DOI:10.1016/j.atmosenv.2018.07.042.
While compliance with air quality standards is evaluated at individual monitoring stations, projections of future ambient air quality for global climate and emission scenarios often rely on coarse resolution models. We describe a statistical transfer approach that bridges the spatial gap between air quality projections, averaged over four broad U.S. regions, from a global chemistry-climate model and the local level (at specific U.S. CASTNet sites). Our site-level projections are intended as a line of evidence in planning for possible futures rather than the sole basis for policy decisions. We use a set of transient sensitivity simulations (2006–2100) from the Geophysical Fluid Dynamics Laboratory (GFDL) chemistry-climate model CM3, designed to isolate the effects of changes in anthropogenic ozone (O3) precursor emissions, climate warming, and global background CH4 on surface O3. We find that surface maximum daily 8-h average (MDA8) O3 increases despite constant precursor emissions in a warmer climate during summer, particularly in the low tail of the MDA8 O3 distribution for the Northeastern U.S., while MDA8 O3 decreases slightly throughout the distribution over the West and Southeast during summer and fall. Under scenarios in which non-methane O3 precursors decline as climate warms (RCP4.5 and RCP8.5), summertime MDA8 O3 decreases with NOx emissions, most strongly in the upper tail of the MDA8 O3 distribution. In a scenario where global methane abundances roughly double over the 21st century (RCP8.5), winter and spring MDA8 O3 increases, particularly in the lower tail and over the Western U.S. In this RCP8.5 scenario, the number of days when MDA8 O3 exceeds 70 ppb declines in summer with NOx emissions, but increases in spring (and winter); by the end of the century, the majority of sites in the WE and NE show probabilistic return values of the annual 4th highest MDA8 O3 concentration above 70 ppb (the current O3 NAAQS level). Continued increases in global CH4 abundances can be thought of as a “methane penalty”, offsetting benefits otherwise attainable by controlling non-CH4 O3 precursors.
- Westervelt, Daniel M., A J Conley, Arlene M Fiore, Jean-Francois Lamarque, Drew Shindell, M Previdi, N R Mascioli, G Faluvegi, G Correa, and Larry W Horowitz, August 2018: Connecting regional aerosol emissions reductions to local and remote precipitation responses. Atmospheric Chemistry and Physics, 18(16), DOI:10.5194/acp-18-12461-2018.
The unintended climatic implications of aerosol and precursor emission reductions implemented to protect public health are poorly understood. We investigate the precipitation response to regional changes in aerosol emissions using three coupled chemistry-climate models: NOAA Geophysical Fluid Dynamics Laboratory Coupled Model 3 (GFDL-CM3), NCAR Community Earth System Model (CESM1), and NASA Goddard Institute for Space Studies ModelE2 (GISS-E2). Our approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 emissions) with fourteen individual aerosol emissions perturbation simulations (160–240 years each). We perturb emissions of sulfur dioxide and/or carbonaceous aerosol within six world regions and assess the significance of precipitation responses relative to internal variability determined by the control simulation and across the models. Global and regional precipitation mostly increases when we reduce regional aerosol emissions in the models, with the strongest responses occurring for sulfur dioxide emissions reductions from Europe and the United States. Precipitation responses to aerosol emissions reductions are largest in the tropics and project onto the El Niño-Southern Oscillation (ENSO). Regressing precipitation onto an Indo-Pacific zonal sea level pressure gradient index (a proxy for ENSO) indicates that the ENSO component of the precipitation response to regional aerosol removal can be as large as 20 % of the total simulated response. Precipitation increases in the Sahel in response to aerosol reductions in remote regions because an anomalous interhemispheric temperature gradient alters the position of the Intertropical Convergence Zone (ITCZ). This mechanism holds across multiple aerosol reduction simulations and models.
- Young, Paul J., Vaishali Naik, Arlene M Fiore, Audrey Gaudel, Jean J Guo, and Meiyun Lin, et al., January 2018: Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elementa: Science of the Anthropocene, 6(1), 10, DOI:10.1525/elementa.265.
The goal of the Tropospheric Ozone Assessment Report (TOAR) is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for the problem being addressed, whether biases can be tolerated or corrected, whether the model is appropriately constituted, and whether there is a way to satisfactorily quantify the uncertainty.
- Clifton, Olivia E., Arlene M Fiore, C E Morris, Sergey Malyshev, Larry W Horowitz, Elena Shevliakova, and Fabien Paulot, et al., January 2017: Interannual variability in ozone removal by a temperate deciduous forest. Geophysical Research Letters, 44(1), DOI:10.1002/2016GL070923.
The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities ( math formula). In each month, monthly mean math formula for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime math formula during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and math formula implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.
- Lin, Meiyun, Larry W Horowitz, R Payton, Arlene M Fiore, and G Tonnesen, March 2017: US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics, 17(4), DOI:10.5194/acp-17-2943-2017.
Surface ozone (O3) responds to varying global-to-regional precursor emissions, climate, and extreme weather, with implications for designing effective air quality control policies. We examine these conjoined processes with observations and global chemistry-climate model (GFDL-AM3) hindcasts over 1980–2014. The model captures the salient features of observed trends in daily maximum 8-hour average O3; (1) increases over East Asia (up to 2 ppb yr−1), (2) springtime increases at western US (WUS) rural sites (0.2–0.5 ppb yr−1) with a ‘baseline’ sampling approach, (3) summertime decreases, largest at the 95th percentile, and wintertime increases in the 50th to 5th percentiles over the eastern US (EUS). Asian NOx emissions tripled since 1990, contributing as much as 65 % to modeled springtime background O3 increases (0.3–0.5 ppb yr−1) over the WUS, outpacing O3 decreases attained via US domestic emission controls. Methane increases over this period raise WUS background O3 by 15 %. During summer, increasing Asian emissions approximately offset the effects of US emission reductions, leading to weak or insignificant observed O3 trends at WUS rural sites. While wildfire emissions can enhance summertime monthly mean O3 at individual sites by 2–8 ppb, high temperatures and the associated buildup of O3 produced from regional anthropogenic emissions contribute most to elevating observed summertime O3 throughout the USA. Rising Asian emissions and global methane under the RCP8.5 scenario increase mean springtime O3 above the WUS by ~ 10 ppb from 2010 to 2030. Historical EUS O3 decreases, driven by regional emission controls, were most pronounced in the Southeast with an earlier onset of biogenic isoprene emissions and NOx-sensitive O3 production. Regional NOx reductions also alleviated the O3 buildup during the recent heat waves of 2011 and 2012 relative to earlier heat waves (e.g., 1988; 1999). Without emission controls, the 95th percentile summertime O3 in the EUS would have increased by 0.2–0.4 ppb yr−1 over 1988–2014 due to more frequent hot extremes and rising biogenic isoprene emissions.
- Prather, Michael J., X Zhu, C Flynn, Sarah A Strode, J Rodriguez, S Steenrod, J Liu, Jean-Francois Lamarque, Arlene M Fiore, Larry W Horowitz, and Jingqiu Mao, et al., June 2017: Global Atmospheric Chemistry – Which Air Matters. Atmospheric Chemistry and Physics, 17(14), DOI:10.5194/acp-17-9081-2017.
An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone), and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths vertically. Six global models have prepared such climatologies (at model resolution) for August with emphasis on the vast central Pacific and Atlantic Ocean basins. We show clear differences in model generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multi-dimensional probability densities of key species weighted by frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case. Testing 100-km scale models with 2-km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry-climate models to ingest an externally-sourced climatology and then compute air parcel reactivity is demonstrated. Such an observed climatology is anticipated from the NASA Atmospheric Tomography (ATom) aircraft mission (2015–2020), measuring the key species, executing profiles over the Pacific and Atlantic Ocean basins. This work is a core part of the design of ATom.
- Westervelt, Daniel M., A J Conley, Arlene M Fiore, Jean-Francois Lamarque, Drew Shindell, M Previdi, G Faluvegi, G Correa, and Larry W Horowitz, May 2017: Multi-model precipitation responses to removal of U.S. sulfur dioxide emissions. Journal of Geophysical Research: Atmospheres, 122(9), DOI:10.1002/2017JD026756.
Emissions of aerosols and their precursors are declining due to policies enacted to protect human health, yet we currently lack a full understanding of the magnitude, spatio-temporal pattern, statistical significance, and physical mechanisms of precipitation responses to aerosol reductions. We quantify the global and regional precipitation response to U.S. SO2 emissions reductions using three fully coupled chemistry-climate models: Community Earth System Model (CESM1), Geophysical Fluid Dynamics Laboratory Coupled Model 3 (GFDL-CM3), and Goddard Institute for Space Studies ModelE2 (GISS-E2). We contrast 200-year (or longer) simulations in which anthropogenic U.S. sulfur dioxide (SO2) emissions are set to zero with present-day control simulations to assess the aerosol, cloud, and precipitation response to U.S. SO2 reductions. In all three models, reductions in aerosol optical depth up to 70% and cloud droplet number column concentration up to 60% occur over the eastern U.S. and extend over the Atlantic Ocean. Precipitation responses occur both locally and remotely, with the models consistently showing an increase in most regions considered. We find a northward shift of the tropical rain belt location of up to 0.35° latitude especially near the Sahel, where the rainy season length and intensity are significantly enhanced in two of the three models. This enhancement is the result of greater warming in the Northern versus Southern Hemisphere, which acts to shift the Intertropical Convergence Zone (ITCZ) northward, delivering additional wet season rainfall to the Sahel. Two of our three models thus imply a previously unconsidered benefit of continued U.S. SO2 reductions for Sahel precipitation.
- Barnes, Elizabeth A., Arlene M Fiore, and Larry W Horowitz, May 2016: Detection of trends in surface ozone in the presence of climate variability. Journal of Geophysical Research: Atmospheres, 121(10), DOI:10.1002/2015JD024397.
Trends in trace atmospheric constituents can be driven by trends in their (precursor) emissions but also by trends in meteorology. Here, we use ground-level ozone as an example to highlight the extent to which unforced, low-frequency climate variability can drive multi-decadal trends. Using output from six experiments of the GFDL chemistry-climate model (CM3), we demonstrate that 20-year trends in surface ozone driven by climate variability alone can be as large as those forced by changes in ozone precursor emissions or by anthropogenic climate change. We highlight regions and seasons where surface ozone is strongly influenced by climate variability, and thus, where a given forced trend may be more difficult to detect. A corollary is that this approach identifies regions and seasons of low variability, where measurement sites may be most effectively deployed to detect a particular trend driven by changing precursor emissions. We find that the RCP4.5 and RCP8.5 forced surface ozone trends in most locations emerge over background variability during the first half of the 21st century. Ozone trends are found to respond mostly to changes in emissions of ozone precursors and unforced climate variability, with a comparatively small impact from anthropogenic climate change. Thus, attempts to attribute observed trends to regional emissions changes require consideration of internal climate variability, particularly for short record lengths and small forced trends.
- Westervelt, Daniel M., Larry W Horowitz, Vaishali Naik, A P K Tai, Arlene M Fiore, and D L Mauzerall, October 2016: Quantifying PM2.5-meteorology sensitivities in a global climate model. Atmospheric Environment, 142, DOI:10.1016/j.atmosenv.2016.07.040.
Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 μg m−3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by −0.06 μg m−3 (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 μg m−3 for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006–2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10–50% over the eastern United States for several variables), although the modeled PM2.5 is less sensitive to precipitation than in the observations due to weaker convective scavenging. We conclude that the hypothesized “climate penalty” of future increases in PM2.5 is relatively minor on a global scale compared to the influence of emissions on PM2.5 concentrations.
- Fiore, Arlene M., Vaishali Naik, and E M Leibensperger, June 2015: Air Quality and Climate Connections. Journal of the Air and Waste Management Association, 65(6), DOI:10.1080/10962247.2015.1040526.
Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs reduce SO2 to meet health and other air quality goals, near-term warming accelerates due to “unmasking” of warming induced by rising CO2. Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM. Lowering peak warming requires decreasing atmospheric CO2, which for some source categories would also reduce co-emitted air pollutants or their precursors. Model projections for alternative climate and air quality scenarios indicate a wide range for U.S. surface O3 and fine PM, although regional projections may be confounded by interannual to decadal natural climate variability. Continued implementation of U.S. NOx emission controls guards against rising pollution levels triggered either by climate change or by global emission growth. Improved accuracy and trends in emission inventories are critical for accountability analyses of historical and projected air pollution and climate mitigation policies.
- Lin, Meiyun, Arlene M Fiore, Larry W Horowitz, Andrew O Langford, S J Oltmans, D W Tarasick, and H E Rieder, May 2015: Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions. Nature Communications, 6, 7105, DOI:10.1038/ncomms8105.
Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as ‘exceptional events’, which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<−1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events.
- Rieder, H E., Arlene M Fiore, Larry W Horowitz, and Vaishali Naik, January 2015: Projecting policy-relevant metrics for high summertime ozone pollution events over the eastern United States due to climate and emission changes during the 21st century. Journal of Geophysical Research: Atmospheres, 120(2), DOI:10.1002/2014JD022303.
Over the eastern United States (EUS), nitrogen oxides (NOx) emission controls have led to improved air quality over the past two decades, but concerns have been raised that climate warming may offset some of these gains. Here we analyze the effect of changing emissions and climate, in isolation and combination, on EUS summertime surface ozone (O3) over the recent past and the 21st century in an ensemble of simulations performed with the Geophysical Fluid Dynamics Laboratory CM3 chemistry-climate model. The simulated summertime EUS O3 is biased high but captures the structure of observed changes in regional O3 distributions following NOx emission reductions. We introduce a statistical bias correction, which allows derivation of policy-relevant statistics by assuming a stationary mean state bias in the model, but accurate simulation of changes at each quantile of the distribution. We contrast two different 21st century scenarios: (i) representative concentration pathway (RCP) 4.5 and (ii) simulations with well-mixed greenhouse gases (WMGG) following RCP4.5 but with emissions of air pollutants and precursors held fixed at 2005 levels (RCP4.5_WMGG). We find under RCP4.5 no exceedance of maximum daily 8 hour average ozone above 75 ppb by mid-21st century, reflecting the U.S. NOx emissions reductions projected in RCP4.5, while more than half of the EUS exceeds this level by the end of the 21st century under RCP4.5_WMGG. Further, we find a simple relationship between the changes in estimated 1 year return levels and regional NOx emission changes, implying that our results can be generalized to estimate changes in the frequency of EUS pollution events under different regional NOx emission scenarios.
- Clifton, Olivia E., Arlene M Fiore, G Correa, Larry W Horowitz, and Vaishali Naik, October 2014: 21st Century Reversal of the Surface Ozone Seasonal Cycle over the Northeastern United States. Geophysical Research Letters, 41(20), DOI:10.1002/2014GL061378.
Changing emissions can alter the surface O3 seasonal cycle, as detected from Northeastern U.S. (NE) observations during recent decades. Under continued regional precursor emission controls (-72% NE NOx by 2100), the NE surface O3 seasonal cycle reverses (to a winter maximum) in 21st Century transient chemistry-climate simulations. Over polluted regions, regional NOx largely controls the shape of surface O3 seasonal cycles. In the absence of regional NOx controls, climate warming contributes to a higher surface O3 summertime peak over the NE. A doubling of the global CH4 abundance by 2100 partially offsets summertime surface O3 decreases attained via NOx reductions and contributes to raising surface O3 during December-March when the O3 lifetime is longer. The similarity between surface O3 seasonal cycles over the NE and the InterMountain West by 2100 indicates a NE transition to a region representative of baseline surface O3 conditions.
- Duncan, B N., Arlene M Fiore, and Meiyun Lin, et al., September 2014: Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 94, DOI:10.1016/j.atmosenv.2014.05.061.
Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for “exceptional event” declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.
- Fiore, Arlene M., J T Oberman, Meiyun Lin, L Zhang, Olivia E Clifton, D J Jacob, Vaishali Naik, Larry W Horowitz, J P Pinto, and G P Milly, October 2014: Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations. Atmospheric Environment, DOI:10.1016/j.atmosenv.2014.07.045.
Accurate estimates for North American background (NAB) ozone (O3) in surface air over the United States are needed for setting and implementing an attainable national O3 standard. These estimates rely on simulations with atmospheric chemistry-transport models that set North American anthropogenic emissions to zero, and to date have relied heavily on one global model. We examine NAB estimates for spring and summer 2006 with two independent global models (GEOS-Chem and GFDL AM3). We evaluate the base simulations, which include North American anthropogenic emissions, with mid-tropospheric O3 retrieved from space and ground-level O3 measurements. The models often bracket the observed values, implying value in developing a multi-model approach to estimate NAB O3. Consistent with earlier studies, the models robustly simulate the largest nation-wide NAB levels at high-altitude western U.S. sites (seasonal average maximum daily 8-h values of ∼40–50 ppb in spring and ∼25–40 ppb in summer) where it correlates with observed O3. At these sites, a 27-year GFDL AM3 simulation simulates observed O3 events above 60 ppb and indicates that year-to-year variations in NAB O3 influence their annual frequency (with NAB contributing 50–60 ppb or more during individual events). During summer over the eastern United States (EUS), when photochemical production from regional anthropogenic emissions peaks, NAB is largely uncorrelated with observed values and it is lower than at high-altitude sites (average values of ∼20–30 ppb). Four processes contribute substantially to model differences in specific regions and seasons: lightning NOx, biogenic isoprene emissions and chemistry, wildfires, and stratosphere-to-troposphere transport. Differences in the representations of these processes within the GFDL AM3 and GEOS-Chem models contribute more to uncertainty in NAB estimates, particularly in spring when NAB is highest, than the choice of horizontal resolution within a single model (GEOS-Chem). We propose that future efforts seek to constrain these processes with targeted analysis of multi-model simulations evaluated with observations of O3 and related species from multiple platforms, and thereby reduce the error on NAB estimates needed for air quality planning.
- Kirtman, Ben P., Arlene M Fiore, and Gabriel A Vecchi, et al., March 2014: Near-term climate change: Projections and predictability In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 953-1028.
- Lapina, K, D K Henze, J B Milford, Min Huang, Meiyun Lin, and Arlene M Fiore, et al., January 2014: Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S.. Journal of Geophysical Research: Atmospheres, 119(1), DOI:10.1002/2013JD020905.
W126 is a cumulative ozone exposure index based on sigmoidally weighted daytime ozone concentrations used to evaluate the impacts of ozone on vegetation. We quantify W126 in the U.S. in the absence of North American anthropogenic emissions (North American background or “NAB" ) using three regional or global chemical transport models for May–July 2010. All models overestimate W126 in the eastern U.S. due to a persistent bias in daytime ozone, while the models are relatively unbiased in California and the intermountain West. Substantial difference in the magnitude and spatial and temporal variability of the estimates of W126 NAB between models supports the need for a multi-model approach. While the average NAB contribution to daytime ozone in the intermountain West is 64–78%, the average W126 NAB is only 9–27% of current levels, owing to the weight given to high O 3 concentrations in W126. Based on a three-model mean, NAB explains ∼ 30% of the daily variability in the W126 daily index in the intermountain West. Adjoint sensitivity analysis shows that nationwide W126 is influenced most by NO x emissions from anthropogenic (58% of the total sensitivity) and natural (25%) sources followed by non-methane volatile organic compounds (10%) and CO (7%). Most of the influence of anthropogenic NO x comes from the U.S. (80%), followed by Canada (9%), Mexico (4%) and China (3%). Thus, long-range transport of pollution has a relatively small impact on W126 in the U.S., and domestic emissions control should be effective for reducing W126 levels.
- Lin, Meiyun, Larry W Horowitz, S J Oltmans, Arlene M Fiore, and Songmiao Fan, February 2014: Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability. Nature Geoscience, 7(2), DOI:10.1038/ngeo2066.
A potent greenhouse gas and biological irritant, tropospheric ozone is also the primary source of atmospheric hydroxyl radicals, which remove numerous hazardous trace gases from the atmosphere. Tropospheric ozone levels have increased in spring at remote sites in the mid-latitudes of the Northern Hemisphere over the past few decades; this increase has been attributed to a growth in Asian precursor emissions. In contrast, 40 years of continuous measurements at Mauna Loa Observatory in Hawaii reveal little change in tropospheric ozone levels during spring (March–April), but a rise in autumn (September–October). Here we examine the contribution of decadal shifts in atmospheric circulation patterns to decadal variability in tropospheric ozone levels at Mauna Loa using a suite of chemistry–climate model simulations. We show that the flow of ozone-rich air from Eurasia towards Hawaii during spring weakened in the 2000s as a result of La-Niña-like decadal cooling in the eastern equatorial Pacific Ocean. During autumn, in contrast, the flow of ozone-rich air from Eurasia to Hawaii strengthened in the mid-1990s onwards, coincident with the positive phase of the Pacific–North American pattern. We suggest that these shifts in atmospheric circulation patterns can reconcile observed trends in tropospheric ozone levels at Mauna Loa and the northern mid-latitudes in recent decades. We conclude that decadal variability in atmospheric circulation patterns needs to be considered when attributing observed changes in tropospheric ozone levels to human-induced trends in precursor emissions.
- Zoogman, P, D J Jacob, K Chance, Xiaoping Liu, Meiyun Lin, Arlene M Fiore, and K R Travis, June 2014: Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations. Atmospheric Chemistry and Physics, 14(12), DOI:10.5194/acp-14-6261-2014.
High-ozone events, approaching or exceeding the National Ambient Air Quality Standard (NAAQS), are frequently observed in the US Intermountain West in association with subsiding air from the free troposphere. Monitoring and attribution of these events is problematic because of the sparsity of the current network of surface measurements and lack of vertical information. We present an Observing System Simulation Experiment (OSSE) to evaluate the ability of the future geostationary satellite instrument Tropospheric Emissions: Monitoring of Pollution (TEMPO), scheduled for launch in 2018–2019, to monitor and attribute high-ozone events in the Intermountain West through data assimilation. TEMPO will observe ozone in the ultraviolet (UV) and visible (Vis) bands to provide sensitivity in the lower troposphere. Our OSSE uses ozone data from the GFDL AM3 chemistry-climate model (CCM) as the "true" atmosphere and samples it for April–June 2010 with the current surface network (CASTNet –Clean Air Status and Trends Network– sites), a configuration designed to represent TEMPO, and a low Earth orbit (LEO) IR (infrared) satellite instrument. These synthetic data are then assimilated into the GEOS-Chem chemical transport model (CTM) using a Kalman filter. Error correlation length scales (500 km in horizontal, 1.7 km in vertical) extend the range of influence of observations. We show that assimilation of surface data alone does not adequately detect high-ozone events in the Intermountain West. Assimilation of TEMPO data greatly improves the monitoring capability, with little information added from the LEO instrument. The vertical information from TEMPO further enables the attribution of NAAQS exceedances to background ozone. This is illustrated with the case of a stratospheric intrusion.
- Avnery, S, D L Mauzerall, and Arlene M Fiore, April 2013: Increasing Global Agricultural Production by Reducing Ozone Damages via Methane Emission Controls and Ozone Resistant Cultivar Selection. Global Change Biology, 19(4), DOI:10.1111/gcb.12118.
Meeting the projected 50% increase in global grain demand by 2030 without further environmental degradation poses a major challenge for agricultural production. Because surface ozone (O3) has a significant negative impact on crop yields, one way to increase future production is to reduce O3-induced agricultural losses. We present two strategies whereby O3 damage to crops may be reduced. We first examine the potential benefits of an O3 mitigation strategy motivated by climate change goals: gradual emission reductions of methane (CH4), an important greenhouse gas and tropospheric O3 precursor that has not yet been targeted for O3 pollution abatement. Our second strategy focuses on adapting crops to O3 exposure by selecting cultivars with demonstrated O3 resistance. We find that the CH4 reductions considered would increase global production of soybean, maize and wheat by 23-102 Mt in 2030 – the equivalent of a ~2-8% increase in year 2000 production worth $3.5-15 billion worldwide (USD2000), increasing the cost-effectiveness of this CH4 mitigation policy. Choosing crop varieties with O3 resistance (relative to median-sensitivity cultivars) could improve global agricultural production in 2030 by over 140 Mt, the equivalent of a 12% increase in 2000 production worth ~$22 billion. Benefits are dominated by improvements for wheat in South Asia, where O3-induced crop losses would otherwise be severe. Combining the two strategies generates benefits that are less than fully additive given the nature of O3 effects on crops. Our results demonstrate the significant potential to sustainably improve global agricultural production by decreasing O3-induced reductions in crop yields.
- Doherty, R, and Arlene M Fiore, et al., June 2013: Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study. Journal of Geophysical Research: Atmospheres, 118(9), DOI:10.1002/jgrd.50266.
The impact of climate change between 2000 and 2095 SRES A2 climates on surface O3 and on O3 source–receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual-average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes: (i) enhanced PAN decomposition, (ii) higher water vapor concentrations and (iii) enhanced isoprene emission largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 =0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.
- Fang, Y, Arlene M Fiore, Jean-Francois Lamarque, Larry W Horowitz, and Meiyun Lin, February 2013: Using synthetic tracers as a proxy for summertime PM2.5 air quality over the Northeastern United States in physical climate models. Geophysical Research Letters, 40(4), DOI:10.1002/GRL.50162.
Fine particulate matter (PM2.5) is a criteria pollutant. Its sensitivity to meteorology implies its distribution will likely change with climate shifts. Limited availability of global climate models with full chemistry complicates efforts to assess rigorously the uncertainties in the PM2.5 response to a warming climate. We evaluate the potential for PM2.5 distributions in a chemistry-climate model under current-day and warmer climate conditions over the Northeastern United States to be represented by a Synthetic Aerosol tracer (SAt). The SAt implemented into the GFDL chemistry-climate model (AM3) follows the protocol of a recent multi-model community effort (HTAP), with CO emissions, 25-day chemical lifetime and wet deposition rate of sulfate. Over the Northeastern United States, the summer daily time series of SAt correlates strongly with that of PM2.5, with similar cumulative density functions, under both present and future climate conditions. With a linear regression model derived from PM2.5 and SAt in the current-day simulation, we reconstruct both the current-day and future PM2.5 daily time series from the simulated SAt. This reconstruction captures the summer mean PM2.5, the incidence of days above the 24-h mean PM2.5 NAAQS, as well as PM2.5 responses to climate change. This reconstruction also works over other polluted Northern Hemispheric regions and in spring. Our proof-of-concept study demonstrates that simple tracers can be developed to mimic PM2.5, including its response to climate change, as an easy-to-implement and low-cost addition to physical climate models that should help air quality managers to reap the benefits of climate models that have no chemistry.
- Fang, Y, D L Mauzerall, Junfeng Liu, Arlene M Fiore, and Larry W Horowitz, November 2013: Impacts of 21st century climate change on global air pollution-related premature mortality. Climatic Change, 121(2), DOI:10.1007/s10584-013-0847-8.
Climate change modulates surface concentrations of fine particulate matter (PM2.5) and ozone (O3), indirectly affecting premature mortality attributed to air pollution. We estimate the change in global premature mortality and years of life lost (YLL) associated with changes in surface O3 and PM2.5 over the 21st century as a result of climate change. We use a global coupled chemistry-climate model to simulate current and future climate and the effect of changing climate on air quality. Epidemiological concentration-response relationships are applied to estimate resulting changes in premature mortality and YLL. The effect of climate change on air quality is isolated by holding emissions of air pollutants constant while allowing climate to evolve over the 21st century according to a moderate projection of greenhouse gas emissions (A1B scenario). Resulting changes in 21st century climate alone lead to an increase in simulated PM2.5 concentrations globally, and to higher (lower) O3 concentrations over populated (remote) regions. Global annual premature mortality associated with chronic exposure to PM2.5 increases by approximately 100 thousand deaths (95 % confidence interval, CI, of 66–130 thousand) with corresponding YLL increasing by nearly 900 thousand (95 % CI, 576–1,128 thousand) years. The annual premature mortality due to respiratory disease associated with chronic O3 exposure increases by +6,300 deaths (95 % CI, 1,600–10,400). This climate penalty indicates that stronger emission controls will be needed in the future to meet current air quality standards and to avoid higher health risks associated with climate change induced worsening of air quality over populated regions.
- Mao, Jingqiu, Larry W Horowitz, Vaishali Naik, Songmiao Fan, Junfeng Liu, and Arlene M Fiore, March 2013: Sensitivity of tropospheric oxidants to biomass burning emissions: implications for radiative forcing. Geophysical Research Letters, 40(6), DOI:10.1002/grl.50210.
Biomass burning is one of the largest sources of trace gases and aerosols to the atmosphere, and has profound influence on tropospheric oxidants and radiative forcing. Using a fully coupled chemistry-climate model (GFDL AM3), we find that co-emission of trace gases and aerosol from present-day biomass burning increases the global tropospheric ozone burden by 5.1%, and decreases global mean OH by 6.3%. Gas and aerosol emissions combine to increase CH4 lifetime non-linearly. Heterogeneous processes are shown to contribute partly to the observed lower ΔO3/ΔCO ratios in northern high latitudes versus tropical regions. The radiative forcing from biomass burning is shown to vary non-linearly with biomass burning strength. At present-day emission levels, biomass burning produces a net radiative forcing of −0.19 W/m2 (−0.29 from short-lived species, mostly aerosol direct and indirect effects, +0.10 from CH4 and CH4-induced changes in O3 and stratospheric H2O), but increasing emissions to over 5 times present levels would result in a positive net forcing.
- Naik, Vaishali, A Voulgarakis, Arlene M Fiore, Larry W Horowitz, Jean-Francois Lamarque, and Meiyun Lin, et al., May 2013: Preindustrial to present day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(10), DOI:10.5194/acp-13-5277-2013.
We have analysed results from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore trends in hydroxyl radical concentration (OH) and methane (CH4) lifetime since preindustrial times (1850) and gain a better understanding of their key drivers. For the present day (2000), the models tend to simulate higher OH abundances in the Northern Hemisphere versus Southern Hemisphere. Evaluation of simulated carbon monoxide concentrations, the primary sink for OH, against observations suggests low biases in the Northern Hemisphere that may contribute to the high north-south OH asymmetry in the models. A comparison of modelled and observed methyl chloroform lifetime suggests that the present day global multi-model mean OH concentration is slightly overestimated. Despite large regional changes, the modelled global mean OH concentration is roughly constant over the past 150 yr, due to concurrent increases in OH sources (humidity, tropospheric ozone, and NOx emissions), together with decreases in stratospheric ozone and increase in tropospheric temperature, compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large intermodel diversity in the sign and magnitude of OH and methane lifetime changes over this period reflects differences in the relative importance of chemical and physical drivers of OH within each model. For the 1980 to 2000 period, we find that climate warming and a slight increase in mean OH leads to a 4.3 ± 1.9% decrease in the methane lifetime. Analysing sensitivity simulations performed by 10 models, we find that preindustrial to present day climate change decreased the methane lifetime by about 4 months, representing a negative feedback on the climate system. Further, using a subset of the models, we find that global mean OH increased by 46.4 ± 12.2% in response to preindustrial to present day anthropogenic NOx emission increases, and decreased by 17.3 ± 2.3%, 7.6 ± 1.5%, and 3.1 ± 3.0% due to methane burden, and anthropogenic CO, and NMVOC emissions increases, respectively.
- Naik, Vaishali, Larry W Horowitz, Arlene M Fiore, Paul Ginoux, Jingqiu Mao, A M Aghedo, and Hiram Levy II, July 2013: Impact of preindustrial to present day changes in short-lived pollutant emissions on atmospheric composition and climate forcing. Journal of Geophysical Research: Atmospheres, 118, DOI:10.1002/jgrd.50608.
We describe and evaluate atmospheric chemistry in the newly developed Geophysical Fluid Dynamics Laboratory chemistry-climate model (GFDL AM3) and apply it to investigate the net impact of preindustrial (PI) to present (PD) changes in short-lived pollutant emissions (ozone precursors, sulfur dioxide, and carbonaceous aerosols) and methane concentration on atmospheric composition and climate forcing. The inclusion of online troposphere-stratosphere interactions, gas-aerosol chemistry, and aerosol-cloud interactions (including direct and indirect aerosol radiative effects) in AM3 enables a more complete representation of interactions among short-lived species, and thus their net climate impact, than was considered in previous climate assessments. The base AM3 simulation, driven with observed sea surface temperature (SST) and sea ice cover (SIC) over the period 1981–2007, generally reproduces the observed mean magnitude, spatial distribution, and seasonal cycle of tropospheric ozone and carbon monoxide. The global mean aerosol optical depth in our base simulation is within 5% of satellite measurements over the 1982–2006 time period. We conduct a pair of simulations in which only the short-lived pollutant emissions and methane concentrations are changed from PI (1860) to PD (2000) levels (i.e., SST, SIC, greenhouse gases, and ozone depleting substances are held at PD levels). From the PI to PD, we find that changes in short-lived pollutant emissions and methane have caused the tropospheric ozone burden to increase by 39% and the global burdens of sulfate, black carbon and organic carbon to increase by factors of 3, 2.4 and 1.4, respectively. Tropospheric hydroxyl concentration decreases by 7%, showing that increases in OH sinks (methane, carbon monoxide, non-methane volatile organic compounds, and sulfur dioxide) dominate over sources (ozone and nitrogen oxides) in the model. Combined changes in tropospheric ozone and aerosols cause a net negative top-of-the-atmosphere radiative forcing perturbation (−1.05 Wm-2) indicating that the negative forcing (direct plus indirect) from aerosol changes dominates over the positive forcing due to ozone increases, thus masking nearly half of the PI to PD positive forcing from long-lived greenhouse gases globally, consistent with other current generation chemistry-climate models.
- Turner, A J., Arlene M Fiore, Larry W Horowitz, and M Bauer, January 2013: Summertime cyclones over the Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone pollution. Atmospheric Chemistry and Physics, 13(2), DOI:10.5194/acp-13-565-2013.
Prior work indicates that the frequency of summertime mid-latitude cyclones tracking across the Great Lakes Storm Track (GLST, bounded by: 70° W, 90° W, 40° N, and 50° N) are strongly anticorrelated with ozone (O3) pollution episodes over the Northeastern United States (US). We apply the MAP Climatology of Mid-latitude Storminess (MCMS) algorithm to 6-hourly sea level pressure fields from over 2500 yr of simulations with the GFDL CM3 global coupled chemistry-climate model. These simulations include (1) 875 yr with constant 1860 emissions and forcings (Pre-industrial Control), (2) five ensemble members for 1860–2005 emissions and forcings (Historical), and (3) future (2006–2100) scenarios following the Representative Concentration Pathways (RCP 8.5 (one member; extreme warming); RCP 4.5 (three members; moderate warming); RCP 4.5* (one member; a variation on RCP 4.5 in which only well-mixed greenhouse gases evolve along the RCP 4.5 trajectory)). The GFDL CM3 Historical simulations capture the mean and variability of summertime cyclones traversing the GLST within the range determined from four reanalysis datasets. Over the 21st century (2006–2100), the frequency of summertime mid-latitude cyclones in the GLST decreases under the RCP 8.5 scenario (m = −0.06 a−1, p < 0.01) and in the RCP 4.5 ensemble mean (m = −0.03 a−1, p < 0.01). These trends are significant when assessed relative to the variability in the Pre-industrial Control simulation (p > 0.06 for 100-yr sampling intervals; −0.01 a−1 < m < 0.02 a−1). In addition, the RCP 4.5* scenario enables us to determine the relationship between summertime GLST cyclones and high-O3 events (>95th percentile) in the absence of emission changes. The summertime GLST cyclone frequency explains less than 10% of the variability in high-O3 events over the Northeastern US in the model. Our findings imply that careful study is required prior to applying the strong relationship noted in earlier work to changes in storm counts.
- Fiore, Arlene M., Vaishali Naik, Paul Ginoux, and Larry W Horowitz, et al., September 2012: Global air quality and climate. Chemical Society Reviews, 41(19), DOI:10.1039/C2CS35095E.
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry–climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.
- Fry, M, Vaishali Naik, J Jason West, M Daniel Schwarzkopf, and Arlene M Fiore, et al., April 2012: The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing. Journal of Geophysical Research: Atmospheres, 117, D07306, DOI:10.1029/2011JD017134.
Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42-). We examine changes in the tropospheric composition of O3, CH4, SO42- and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean {plus minus}1 standard deviation) across multiple CTMs. We evaluate steady-state O3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 {plus minus}0.6 to 1.7 {plus minus}2 mWm-2/TgN yr-1), with some variation among models. Negative net RFs result from reductions in global CH4 (-162.6 {plus minus}2 mWm-2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (-0.4 {plus minus}0.2 to -0.7 {plus minus}0.2 mWm-2/TgC yr-1) and CO emissions (-0.13 {plus minus}0.02 to -0.15 {plus minus}0.02 mWm-2/TgCO yr-1). Including the effect of O3 on CO2 uptake by vegetation, likely makes these net RFs more negative by -1.9 to -5.2 mWm-2/TgN yr-1, -0.2 to -0.7 mWm-2/TgC yr-1, and -0.02 to -0.05 mWm-2/TgCO yr-1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42-, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42- responses to oxidant changes range from 0.4 {plus minus}2.6 to -1.9 {plus minus}1.3 Gg for NOx reductions, 0.1 {plus minus}1.2 to -0.9 {plus minus}0.8 Gg for NMVOC reductions, and -0.09 {plus minus}0.5 to -0.9 {plus minus}0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 {plus minus}3.7 without stratospheric O3 or water vapor, 24.2 {plus minus}4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (-18.7 {plus minus}25.9 to -1.9 {plus minus}8.7 for NOx, 4.8 {plus minus}1.7 to 8.3 {plus minus}1.9 for NMVOC, and 1.5 {plus minus}0.4 to 1.7 {plus minus}0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally-specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions.
- John, Jasmin G., Arlene M Fiore, Vaishali Naik, Larry W Horowitz, and John P Dunne, December 2012: Climate versus emission drivers of methane lifetime from 1860-2100. Atmospheric Chemistry and Physics, 12(24), DOI:10.5194/acp-12-12021-2012.
With a more-than-doubling in the atmospheric abundance of the potent greenhouse gas methane (CH4) since preindustrial times, and indications of renewed growth following a leveling off in recent years, questions arise as to future trends and resulting climate and public health impacts from continued growth without mitigation. Changes in atmospheric methane lifetime are determined by factors which regulate the abundance of OH, the primary methane removal mechanism, including changes in CH4 itself. We investigate the role of emissions of short-lived species and climate in determining the evolution of tropospheric methane lifetime in a suite of historical (1860�2005) and Representative Concentration Pathway (RCP) simulations (2006�2100), conducted with the Geophysical Fluid Dynamics Laboratory (GFDL) fully coupled chemistry-climate model (CM3). From preindustrial to present, CM3 simulates an overall 5% increase in CH4 lifetime due to a doubling of the methane burden which offsets coincident increases in nitrogen oxide (NOx) emissions. Over the last two decades, however, the methane lifetime declines steadily, coinciding with the most rapid climate warming and observed slow-down in CH4 growth rates, reflecting a possible negative feedback through the CH4 sink. The aerosol indirect effect plays a significant role in the CM3 climate and thus in the future evolution of the methane lifetime, due to the rapid projected decline of aerosols under all four RCPs. In all scenarios, the methane lifetime decreases (by 5�13%) except for the most extreme warming case (RCP8.5), where it increases by 4% due to the near-doubling of the CH4 abundance, reflecting a positive feedback on the climate system. In the RCP4.5 scenario changes in short-lived climate forcing agents reinforce climate warming and enhance OH, leading to a more-than-doubling of the decrease in methane lifetime from 2006 to 2100 relative to a simulation in which only well-mixed greenhouse gases are allowed to change along the RCP4.5 scenario (13% vs. 5%) Future work should include process-based studies to better understand and elucidate the individual mechanisms controlling methane lifetime.
- Lin, Meiyun, Arlene M Fiore, Larry W Horowitz, Owen R Cooper, Vaishali Naik, J S Holloway, Bryan J Johnson, Ann M Middlebrook, S J Oltmans, I B Pollack, Marta Abalos, J X Warner, C Wiedinmyer, R John Wilson, and Bruce Wyman, February 2012: Transport of Asian ozone pollution into surface air over the western United States in spring. Journal of Geophysical Research: Atmospheres, 117, D00V07, DOI:10.1029/2011JD016961.
Many prior studies clearly document episodic Asian pollution in the western U.S. free troposphere. Here, we examine the mechanisms involved in the transport of Asian pollution plumes into western U.S. surface air through an integrated analysis of in situ and satellite measurements in May–June 2010 with a new global high-resolution (50 50 km2) chemistry-climate model (GFDL AM3). We find that AM3 with full stratosphere-troposphere chemistry nudged to reanalysis winds successfully reproduces observed sharp ozone gradients above California, including the interleaving and mixing of Asian pollution and stratospheric air associated with complex interactions of midlatitude cyclone air streams. Asian pollution descends isentropically behind cold fronts; at 800 hPa a maximum enhancement to ozone occurs over the southwestern U.S., including the densely populated Los Angeles Basin. During strong episodes, Asian emissions can contribute 8–15 ppbv ozone in the model on days when observed daily maximum 8-h average ozone (MDA8 O3) exceeds 60 ppbv. We find that in the absence of Asian anthropogenic emissions, 20% of MDA8 O3 exceedances of 60 ppbv in the model would not have occurred in the southwestern USA. For a 75 ppbv threshold, that statistic increases to 53%. Our analysis indicates the potential for Asian emissions to contribute to high-O3 episodes over the high-elevation western USA, with implications for attaining more stringent ozone standards in this region. We further demonstrate a proof-of-concept approach using satellite CO column measurements as a qualitative early warning indicator to forecast Asian ozone pollution events in the western U.S. with lead times of 1–3 days.
- Lin, Meiyun, Arlene M Fiore, Owen R Cooper, Larry W Horowitz, Andrew O Langford, Hiram Levy II, Bryan J Johnson, and Vaishali Naik, et al., October 2012: Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. Journal of Geophysical Research: Atmospheres, 117, D00V22, DOI:10.1029/2012JD018151.
The published literature debates the extent to which naturally occurring stratospheric ozone intrusions reach the surface and contribute to exceedances of the U.S. National Ambient Air Quality Standard (NAAQS) for ground-level ozone (75 ppbv implemented in 2008). Analysis of ozonesondes, lidar, and surface measurements over the western U.S. from April to June 2010 show that a global high-resolution (~50x50 km2) chemistry-climate model (GFDL AM3) captures the observed layered features and sharp ozone gradients of deep stratospheric intrusions, representing a major improvement over previous chemical transport models. Thirteen intrusions enhanced total daily maximum 8-hour average (MDA8) ozone to ~70-86 ppbv at surface sites. With a stratospheric ozone tracer defined relative to a dynamically-varying tropopause, we find that stratospheric intrusions can episodically increase surface MDA8 ozone by 20-40 ppbv (all model estimates are bias corrected), including on days when observed ozone exceeds the NAAQS threshold. These stratospheric intrusions elevated background ozone concentrations (estimated by turning off North American anthropogenic emissions in the model) to MDA8 values of 60-75 ppbv. At high-elevation western U.S. sites, the 25th-75th percentile of the stratospheric contribution is 15-25 ppbv when observed MDA8 ozone is 60-70 ppbv, and increases to ~17-40 ppbv for the 70-85 ppbv range. These estimates, up to 2-3 times greater than previously reported, indicate a major role for stratospheric intrusions in contributing to springtime high-O3 events over the high-altitude western U.S., posing a challenge for staying below the ozone NAAQS threshold, particularly if a value in the 60-70 ppbv range were to be adopted.
- Rasmussen, D J., Arlene M Fiore, Vaishali Naik, Larry W Horowitz, S J McGinnis, and Martin G Schultz, February 2012: Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models. Atmospheric Environment, 47, DOI:10.1016/j.atmosenv.2011.11.021.
We use long-term, coincident O3 and temperature measurements at the regionally representative US Environmental Protection Agency Clean Air Status and Trends Network (CASTNet) over the eastern US from 1988 through 2009 to characterize the surface O3 response to year-to-year fluctuations in weather, for the purpose of evaluating global chemistry-climate models. We first produce a monthly climatology for each site over all available years, defined as the slope of the best-fit line (mO3-T) between monthly average values of maximum daily 8-hour average (MDA8) O3 and monthly average values of daily maximum surface temperature (Tmax). Applying two distinct statistical approaches to aggregate the site-specific measurements to the regional scale, we find that summertime mO3-T is 3–6 ppb K−1 (r = 0.5–0.8) over the Northeast, 3–4 ppb K−1 (r = 0.5–0.9) over the Great Lakes, and 3–6 ppb K−1 (r = 0.2–0.8) over the Mid-Atlantic. The Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model version 3 (AM3) global chemistry-climate model generally captures the seasonal variations in correlation coefficients and mO3-T despite biases in both monthly mean summertime MDA8 O3 (up to +10 to +30 ppb) and daily Tmax (up to +5 K) over the eastern US. During summer, GFDL AM3 reproduces mO3-T over the Northeast (mO3-T = 2–6 ppb K−1; r = 0.6–0.9), but underestimates mO3-Tby 4 ppb K−1 over the Mid-Atlantic, in part due to excessively warm temperatures above which O3 production saturates in the model. Combining Tmax biases in GFDL AM3 with an observation-based mO3-T estimate of 3 ppb K−1 implies that temperature biases could explain up to 5–15 ppb of the MDA8 O3 bias in August and September though correcting for excessively cool temperatures would worsen the O3 bias in June. We underscore the need for long-term, coincident measurements of air pollution and meteorological variables to develop process-level constraints for evaluating chemistry-climate models used to project air quality responses to climate change.
- West, J J., Arlene M Fiore, and Larry W Horowitz, October 2012: Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality. Climatic Change, 114(3-4), DOI:10.1007/s10584-012-0426-4.
Methane emissions contribute to global baseline surface ozone concentrations; therefore reducing methane to address climate change has significant co-benefits for air quality and human health. We analyze the costs of reducing methane from 2005 to 2030, as might be motivated to reduce climate forcing, and the resulting benefits from lower surface ozone to 2060. We construct three plausible scenarios of methane emission reductions, relative to a base scenario, ranging from 75 to 180 Mton CH4 yr−1 decreased in 2030. Using compilations of the global availability of methane emission reductions, the least aggressive scenario (A) does not incur any positive marginal costs to 2030, while the most aggressive (C) requires discovery of new methane abatement technologies. The present value of implementation costs for Scenario B are nearly equal to Scenario A, as it implements cost-saving options more quickly, even though it adopts positive cost measures. We estimate the avoided premature human mortalities due to surface ozone decreases by combining transient full-chemistry simulations of these scenarios in a global atmospheric chemical transport model, with concentration-mortality relationships from a short-term epidemiologic study and projected global population. An estimated 38,000 premature mortalities are avoided globally in 2030 under Scenario B. As benefits of methane reduction are positive but costs are negative for Scenario A, it is justified regardless of how avoided mortalities are valued. The incremental benefits of Scenario B also far outweigh the incremental costs. Scenario C has incremental costs that roughly equal benefits, only when technological learning is assumed. Benefits within industrialized nations alone also exceed costs in Scenarios A and B, assuming that the lowest-cost emission reductions, including those in developing nations, are implemented. Monetized co-benefits of methane mitigation for human health are estimated to be $13–17 per ton CO2eq, with a wider range possible under alternative assumptions. Methane mitigation can be a cost-effective means of long-term and international air quality management, with concurrent benefits for climate.
- Wild, O, and Arlene M Fiore, et al., February 2012: Modelling future changes in surface ozone: a parameterized approach. Atmospheric Chemistry and Physics, 12(4), DOI:10.5194/acp-12-2037-2012.
This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models.
- Fang, Y, Arlene M Fiore, Larry W Horowitz, Anand Gnanadesikan, Isaac M Held, Gang Chen, Gabriel A Vecchi, and Hiram Levy II, September 2011: The impacts of changing transport and precipitation on pollutant distributions in a future climate. Journal of Geophysical Research: Atmospheres, 116, D18303, DOI:10.1029/2011JD015642.
Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide (CO)–like tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the GFDL chemistry-climate model (AM3) for present (1981-2000) and future (2081-2100) climates. In 2081-2100, projected reductions in lower tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081-2100 are similar to 1981-2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large-scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step towards an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a “Diagnosed Precipitation Impact” (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change little as climate warms. Our findings support the need for tighter emission regulations, for both soluble and insoluble pollutants, to obtain a desired level of air quality as climate warms.
- Fiore, Arlene M., Hiram Levy II, and D A Jaffe, February 2011: North American isoprene influence on intercontinental ozone pollution. Atmospheric Chemistry and Physics, 11(4), DOI:10.5194/acp-11-1697-2011.
Changing land-use and climate may alter emissions of biogenic isoprene, a key ozone (O3) precursor. Isoprene is also a precursor to peroxy acetyl nitrate (PAN) and thus affects partitioning among oxidized nitrogen (NOy) species, shifting the balance towards PAN which more efficiently contributes to long-range transport relative to nitric acid (HNO3) which rapidly deposits. With a suite of sensitivity simulations in the MOZART-2 global tropospheric chemistry model, we gauge the relative importance of the intercontinental influence of 20% changes in North American (NA) isoprene versus 20% changes in NA anthropogenic emissions (nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC) and NOx+NMVOC+carbon monoxide+aerosols). The regional NA surface O3 response to a 20% increase in NA isoprene is approximately one third of the response (oppositely signed) to a 20% decrease in all NA anthropogenic emissions in summer. The intercontinental surface O3 response over Europe and North Africa (EU region) to NA isoprene is more than half of the response to all NA anthropogenic emissions combined in summer and fall. During these seasons, natural inter-annual variations in NA isoprene emissions (estimated at ±10%) may modulate the responses of EU surface O3, lower tropospheric PAN, and total NOy deposition to a 20% decrease in NA anthropogenic emissions by ±25%, ±50%, and ±20%, respectively. Lower tropospheric PAN responds similarly for 20% perturbations to either NA isoprene or NA anthropogenic O3 precursor emissions. This PAN response is at least twice as large as the relative changes in surface O3, implying that long-term PAN measurements at high altitude sites may help to detect O3 precursor emission changes. We find that neither the baseline level of isoprene emissions nor the fate of isoprene nitrates contributes to the large diversity in model estimates of the anthropogenic emission influence on intercontinental surface O3 or oxidized nitrogen deposition, reported in the recent TF HTAP multi-model studies (TFHTAP, 2007).
- Zoogman, P, and Arlene M Fiore, et al., December 2011: Ozone air quality measurement requirements for a geostationary satellite mission. Atmospheric Environment, 45(39), DOI:10.1016/j.atmosenv.2011.05.058.
We conduct an Observing System Simulation Experiment (OSSE) to test the ability of geostationary satellite measurements of ozone in different spectral regions to constrain surface ozone concentrations through data assimilation. Our purpose is to define instrument requirements for the NASA GEO-CAPE geostationary air quality mission over North America. We consider instruments using different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are taken as the “true” atmosphere to be sampled by the instruments for July 2001. The resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. The MOZART and GEOS-Chem CTMs have independent heritages and use different assimilated meteorological data sets for the same period, making for an objective OSSE. We show that hourly observations of ozone from geostationary orbit improve the assimilation considerably relative to daily observation from low earth orbit, and that broad observation over the ocean is unnecessary if the objective is to constrain surface ozone distribution over land. We also show that there is little propagation of ozone information from the free troposphere to the surface, so that instrument sensitivity in the boundary layer is essential. UV+Vis and UV+TIR spectral combinations improve greatly the information on surface ozone relative to UV alone. UV+TIR is preferable under high-sensitivity conditions with strong thermal contrast at the surface, but UV+Vis is preferable under low-sensitivity conditions. Assimilation of data from a UV+Vis+TIR instrument reduces the GEOS-Chem error for surface ozone by a factor of two. Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant to climate forcing.
- Fang, Y, Arlene M Fiore, Larry W Horowitz, Hiram Levy II, Y Hu, and A G. Russell, September 2010: Sensitivity of the NOy budget over the United States to anthropogenic and lightning NOx in summer. Journal of Geophysical Research: Atmospheres, 115, D18312, DOI:10.1029/2010JD014079.
We examine the implications of new estimates of the anthropogenic and lightning nitrogen oxide (NOx) source for the budget of oxidized nitrogen (NOy) over the United States in summer using a 3-D global chemical transport model (MOZART-4). As a result of the EPA State Implementation (SIP) call, power plant NOx emissions over the eastern United States decreased significantly, as reflected by a 23% decrease in summer surface emissions from our 2004 inventory to the 1999 U.S. EPA National Emissions Inventory. We increase the model lightning NOx source over northern mid-latitude continents (by a factor of 10) and the fraction emitted into the free troposphere (FT, from 80% to 98%) to better match the recent observation-based estimates. While these NOx source updates improve the simulation of NOx and O3 compared to the INTEX-NA aircraft observations, a bias in the partitioning between HNO3 and PAN remains especially above 8km, suggesting gaps in the current understanding of upper tropospheric processes. We estimate a model NOy export efficiency of 4-14% to the North Atlantic in the FT, within the range of previous plume-based estimates (3%-20%) and lower than the 30% exported directly from the continental boundary layer. Lightning NOx contributes 24-43% of the FT NOy export from the U.S. to the North Atlantic and 28-34% to the NOy wet deposition over the United States, with the ranges reflecting different assumptions. Increasing lightning NOx decreases the fractional contribution of PAN to total NOy export, increases the O3 production in the northern extratropical FT by 33%, and decreases the regional mean ozone production efficiency per unit NOx (OPE) by 30%. If models underestimate the lightning NOx source, they would overestimate the background OPE in the FT and the fractional contribution of PAN to NOy export. Therefore, a model underestimate oflightning NOx would likely lead to an overestimate of the downwind O3 production due to anthropogenic NOx export. Better constraints on the lightning NOx source are required to more confidently assess the impacts of anthropogenic emissions and their changes on air quality over downwind regions.
- Jonson, J E., and Arlene M Fiore, et al., June 2010: A multi-model analysis of vertical ozone profiles. Atmospheric Chemistry and Physics, 10(12), DOI:10.5194/acp-10-5759-2010.
A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-range Transboundary Air Pollution (LRTAP). Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations. In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further. At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by region. Intercontinental transport of ozone is finally determined based on differences in model ensemble calculations. With emissions perturbed by 20% per region, calculated intercontinental contributions to ozone in the free troposphere range from less than 1 ppb to 3 ppb, with small contributions in winter. The results are corroborated by the retroplume calculations. At several locations the seasonal contributions to ozone in the free troposphere from intercontinental transport differ from what was shown earlier at the surface using the same dataset. The large spread in model results points to a need of further evaluation of the chemical and physical processes in order to improve the credibility of global model results.
- Lin, M, T Holloway, Gregory R Carmichael, and Arlene M Fiore, May 2010: Quantifying pollution inflow and outflow over East Asia through coupling regional and global models. Atmospheric Chemistry and Physics, 10(9), DOI:10.5194/acp-10-4221-2010.
Understanding the exchange processes between the atmospheric boundary layer and the free troposphere is crucial for estimating hemispheric transport of air pollution. Most studies of hemispheric air pollution transport have taken a large-scale perspective using global chemical transport models with fairly coarse spatial and temporal resolutions. In support of United Nations Task Force on Hemispheric Transport of Air Pollution (TF HTAP; www.htap.org), this study employs two high-resolution atmospheric chemistry models (WRF-Chem and CMAQ; 36×36 km) driven with chemical boundary conditions from a global model (MOZART; 1.9×1.9°) to examine the role of fine-scale transport and chemistry processes in controlling pollution export and import over the Asian continent in spring (March 2001). Our analysis indicates the importance of rapid venting through deep convection that develops along the leading edge of frontal system convergence bands, which are not adequately resolved in either of two global models compared with TRACE-P aircraft observations during a frontal event. Both regional model simulations and observations show that frontal outflows of CO, O3 and PAN can extend to the upper troposphere (6–9 km). Pollution plumes in the global MOZART model are typically diluted and insufficiently lofted to higher altitudes where they can undergo more efficient transport in stronger winds. We use sensitivity simulations that perturb chemical boundary conditions in the CMAQ regional model to estimate that the O3 production over East Asia (EA) driven by PAN decomposition contributes 20% of the spatial averaged total O3 response to European (EU) emission perturbations in March, and occasionally contributes approximately 50% of the total O3 response in subsiding plumes at mountain observatories (at approximately 2 km altitude). The response to decomposing PAN of EU origin is strongly affected by the O3 formation chemical regimes, which vary with the model chemical mechanism and NOx/VOC emissions. Our high-resolution models demonstrate a large spatial variability (by up to a factor of 6) in the response of local O3 to 20% reductions in EU anthropogenic O3 precursor emissions. The response in the highly populated Asian megacities is 40–50% lower in our high-resolution models than the global model, suggesting that the source-receptor relationships inferred from the global coarse-resolution models likely overestimate health impacts associated with intercontinental O3 transport. Our results highlight the important roles of rapid convective transport, orographic forcing, urban photochemistry and heterogeneous boundary layer processes in controlling intercontinental transport; these processes may not be well resolved in the large-scale models.
- Naik, Vaishali, Arlene M Fiore, and Larry W Horowitz, et al., June 2010: Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics, 10(12), DOI:10.5194/acp-10-5361-2010.
Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2) with itself and with the methyl peroxy radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.
- Steiner, A L., A J Davis, S Sillman, R C Owen, Anna M Michalak, and Arlene M Fiore, December 2010: Observed suppression of ozone formation at extremely high temperatures due to chemical and biophysical feedbacks. Proceedings of the National Academy of Sciences, 107(46), DOI:10.1073/pnas.1008336107.
Ground level ozone concentrations ([O3]) typically show a direct linear relationship with surface air temperature. Three decades of California measurements provide evidence of a statistically significant change in the ozone-temperature slope (ΔmO3-T ) under extremely high temperatures (>312 K). This ΔmO3-T leads to a plateau or decrease in [O3], reflecting the diminished role of nitrogen oxide sequestration by peroxyacetyl nitrates and reduced biogenic isoprene emissions at high temperatures. Despite inclusion of these processes in global and regional chemistry-climate models, a statistically significant change in ΔmO3-T has not been noted in prior studies. Future climate projections suggest a more frequent and spatially widespread occurrence of this ΔmO3-T response, confounding predictions of extreme ozone events based on the historically observed linear relationship.
- Anenberg, S C., and Arlene M Fiore, et al., August 2009: Intercontinental impacts of ozone pollution on human mortality. Environmental Science & Technology, 43(17), DOI:10.1021/es900518z.
Ozone exposure is associated with negative health impacts, including premature mortality. Observations and modeling studies demonstrate that emissions from one continent influence ozone air quality over other continents. We estimate the premature mortalities avoided from surface ozone decreases obtained via combined 20% reductions of anthropogenic nitrogen oxide, nonmethane volatile organic compound, and carbon monoxide emissions in North America (NA), East Asia (EA), South Asia (SA), and Europe (EU). We use estimates of ozone responses to these emission changes from several atmospheric chemical transport models combined with a health impact function. Foreign emission reductions contribute approximately 30%, 30%, 20%, and >50% of the mortalities avoided by reducing precursor emissions in all regions together in NA, EA, SA, and EU, respectively. Reducing emissions in NA and EU avoids more mortalities outside the source region than within, owing in part to larger populations in foreign regions. Lowering the global methane abundance by 20% reduces mortality most in SA, followed by EU, EA, and NA. For some source−receptor pairs, there is greater uncertainty in our estimated avoided mortalities associated with the modeled ozone responses to emission changes than with the health impact function parameters.
- Crevoisier, Cyril, D Nobileau, Arlene M Fiore, R Armante, R A Chédin, and N A Scott, September 2009: Tropospheric methane in the tropics – first year from IASI hyperspectral infrared observations. Atmospheric Chemistry and Physics, 9(17), DOI:10.5194/acp-9-6337-2009.
Simultaneous observations from the Infrared Atmospheric Sounding Interferometer (IASI) and from the Advanced Microwave Sounding Unit (AMSU), launched together onboard the European MetOp platform in October 2006, are used to retrieve a mid-to-upper tropospheric content of methane (CH4) in clear-sky conditions, in the tropics, over sea, for the first 16 months of operation of MetOp (July 2007–October 2008). With its high spectral resolution, IASI provides nine channels in the 7.7 μm band highly sensitive to CH4 with reduced sensitivities to other atmospheric variables. These channels, sensitive to both CH4 and temperature, are used in conjunction with AMSU channels, only sensitive to temperature, to decorrelate both signals through a non-linear inference scheme based on neural networks. A key point of this approach is that no use is made of prior information in terms of methane seasonality, trend, or geographical patterns. The precision of the retrieval is estimated to be about 16 ppbv (~0.9%). Features of the retrieved methane space-time distribution include: (1) a strong seasonal cycle of 30 ppbv in the northern tropics with a maximum in January–March and a minimum in July–September, and a flat seasonal cycle in the southern tropics, in agreement with in-situ measurements; (2) a latitudinal decrease of 30 ppbv from 20° N to 20° S, in boreal spring and summer, lower than what is observed at the surface but in excellent agreement with tropospheric aircraft measurements; (3) geographical patterns in good agreement with simulations from the atmospheric transport and chemistry model MOZART-2, but with a higher variability and a higher concentration in boreal winter; (4) signatures of CH4 emissions transported to the middle troposphere such as a large plume of elevated tropospheric methane south of the Asian continent, which might be due to Asian emissions from rice paddies uplifted by deep convection during the monsoon period and then transported towards Indonesia. In addition to bringing a greatly improved view of methane distribution, these results from IASI should provide a means to observe and understand atmospheric transport pathways of methane from the surface to the upper troposphere.
- Fang, Y, Arlene M Fiore, Larry W Horowitz, Anand Gnanadesikan, Hiram Levy II, Y Hu, and A G. Russell, December 2009: Estimating the contribution of strong daily export events to total pollutant export from the United States in summer. Journal of Geophysical Research: Atmospheres, 114, D23302, DOI:10.1029/2008JD010946.
While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be “episodic,” the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24–48°N along 67.5°W and 80–67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day−1 and a standard deviation of 490 Gg CO day−1. To focus on the synoptic variability, we define a “synoptic background” export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are “strong export days,” classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. “Moderate export days,” defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on “weak export days” (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.
- Fiore, Arlene M., and Larry W Horowitz, et al., February 2009: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. Journal of Geophysical Research, 114, D04301, DOI:10.1029/2008JD010816.
Understanding the surface O3 response over a “receptor” region to emission changes over a foreign “source” region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale “import sensitivity” as the ratio of the O3 response to the 20% reductions in foreign versus “domestic” (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7–0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8–1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O3 above 60 ppb to emission reductions in a foreign region (<10–20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O3 of about 0.1 ppb a−1, at the low end of the 0.1–0.5 ppb a−1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source region.
- Liu, J, D L Mauzerall, Larry W Horowitz, Paul Ginoux, and Arlene M Fiore, September 2009: Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth. Atmospheric Environment, 43(28), DOI:10.1016/j.atmosenv.2009.03.054.
Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997–2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57–95%) over all regions, but are responsible for a smaller fraction of AOD (26–76%). We define “background” aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36–97% for surface concentrations and 38–89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.
- Reidmiller, D R., and Arlene M Fiore, et al., July 2009: The influence of foreign vs. North American emissions on surface ozone in the US. Atmospheric Chemistry and Physics, 9(14), DOI:10.5194/acp-9-5027-2009.
As part of the Hemispheric Transport of Air Pollution (HTAP; http:// www.htap.org) project, we analyze results from 15 global and 1 hemispheric chemical transport models and compare these to Clean Air Status and Trends Network (CASTNet) observations in the United States (US) for 2001. Using the policy-relevant maximum daily 8-h average ozone (MDA8 O3) statistic, the multi-model ensemble represents the observations well (mean r2=0.57, ensemble bias = +4.1 ppbv for all US regions and all seasons) despite a wide range in the individual model results. Correlations are strongest in the northeastern US during spring and fall (r2=0.68); and weakest in the midwestern US in summer (r2=0.46). However, large positive mean biases exist during summer for all eastern US regions, ranging from 10–20 ppbv, and a smaller negative bias is present in the western US during spring (~3 ppbv). In nearly all other regions and seasons, the biases of the model ensemble simulations are ≤5 ppbv. Sensitivity simulations in which anthropogenic O3-precursor emissions (NOx + NMVOC + CO + aerosols) were decreased by 20% in four source regions: East Asia (EA), South Asia (SA), Europe (EU) and North America (NA) show that the greatest response of MDA8 O3 to the summed foreign emissions reductions occurs during spring in the West (0.9 ppbv reduction due to 20% emissions reductions from EA + SA + EU). East Asia is the largest contributor to MDA8 O3 at all ranges of the O3 distribution for most regions (typically ~0.45 ppbv) followed closely by Europe. The exception is in the northeastern US where emissions reductions in EU had a slightly greater influence than EA emissions, particularly in the middle of the MDA8 O3 distribution (response of ~0.35 ppbv between 35–55 ppbv). EA and EU influences are both far greater (about 4x) than that from SA in all regions and seasons. In all regions and seasons O3-precursor emissions reductions of 20% in the NA source region decrease MDA8 O3 the most – by a factor of 2 to nearly 10 relative to foreign emissions reductions. The O3 response to anthropogenic NA emissions is greatest in the eastern US during summer at the high end of the O3 distribution (5–6 ppbv for 20% reductions). While the impact of foreign emissions on surface O3 in the US is not negligible – and is of increasing concern given the recent growth in Asian emissions – domestic emissions reductions remain a far more effective means of decreasing MDA8 O3 values, particularly those above 75 ppb (the current US standard).
- West, J J., Vaishali Naik, Larry W Horowitz, and Arlene M Fiore, August 2009: Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality. Atmospheric Chemistry and Physics, 9(16), DOI:10.5194/acp-9-6077-2009.
Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs) and carbon monoxide (CO) by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.
- West, J J., Vaishali Naik, Larry W Horowitz, and Arlene M Fiore, August 2009: Effect of regional precursor emission controls on long-range ozone transport – Part 2: Steady-state changes in ozone air quality and impacts on human mortality. Atmospheric Chemistry and Physics, 9(16), DOI:10.5194/acp-9-6095-2009.
Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would avoid this disbenefit.
- Wu, S, B N Duncan, D J Jacob, Arlene M Fiore, and O Wild, March 2009: Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions. Geophysical Research Letters, 36, L05806, DOI:10.1029/2008GL036607.
Model studies typically estimate intercontinental influence on surface ozone by perturbing emissions from a source continent and diagnosing the ozone response in the receptor continent. Since the response to perturbations is non-linear due to chemistry, conclusions drawn from different studies may depend on the magnitude of the applied perturbation. We investigate this issue for intercontinental transport between North America, Europe, and Asia with sensitivity simulations in three global chemical transport models. In each region, we decrease anthropogenic emissions of NOx and nonmethane volatile organic compounds (NMVOCs) by 20% and 100%. We find strong nonlinearity in the response to NOx perturbations outside summer, reflecting transitions in the chemical regime for ozone production. In contrast, we find no significant nonlinearity to NOx perturbations in summer or to NMVOC perturbations year-round. The relative benefit of decreasing NOx vs. NMVOC from current levels to abate intercontinental pollution increases with the magnitude of emission reductions.
- Duncan, B N., J Jason West, Y Yoshida, Arlene M Fiore, and J R Ziemke, 2008: The influence of European pollution on ozone in the Near East and northern Africa. Atmospheric Chemistry and Physics, 8(8), DOI:10.5194/acp-8-2267-2008.
We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50–150 additional violations per year (i.e. above those that would occur without European pollution) of the European health standard for ozone (8-h average >120 μg/m3 or ~60 ppbv) in northern Africa and the Near East. We estimate that European ozone pollution is responsible for 50 000 premature mortalities globally each year, of which the majority occurs outside of Europe itself, including 37% (19 000) in northern Africa and the Near East. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions.
- Fiore, Arlene M., J Jason West, Larry W Horowitz, Vaishali Naik, and M Daniel Schwarzkopf, April 2008: Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. Journal of Geophysical Research, 113, D08307, DOI:10.1029/2007JD009162.
Reducing methane (CH4) emissions is an attractive option for jointly addressing climate and ozone (O3) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O3 responds approximately linearly to changes in CH4 emissions over a range of anthropogenic emissions from 0–430 Tg CH4a−1 (0.11–0.16 Tg tropospheric O3 or ∼11–15 ppt global mean surface O3 decrease per Tg a−1 CH4 reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH4 emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005–2030) transient simulations, we demonstrate that cost-effective CH4 controls would offset the positive climate forcing from CH4 and O3 that would otherwise occur (from increases in NOx and CH4 emissions in the baseline scenario) and improve O3 air quality. We estimate that anthropogenic CH4 contributes 0.7 Wm−2 to climate forcing and ∼4 ppb to surface O3 in 2030 under the baseline scenario. Although the response of surface O3 to CH4 is relatively uniform spatially compared to that from other O3 precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local O3 formation regime is NOx-saturated. In the model, CH4 oxidation within the boundary layer (below ∼2.5 km) contributes more to surface O3 than CH4 oxidation in the free troposphere. In NOx-saturated regions, the surface O3 sensitivity to CH4 can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH4. Accurately representing the NOx distribution is thus crucial for quantifying the O3 sensitivity to CH4.
- Quinn, P K., T S Bates, E Baum, N Doubleday, and Arlene M Fiore, et al., 2008: Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 8(6), DOI:10.5194/acp-8-1723-2008.
Several short-lived pollutants known to impact Arctic climate may be contributing to the accelerated rates of warming observed in this region relative to the global annually averaged temperature increase. Here, we present a summary of the short-lived pollutants that impact Arctic climate including methane, tropospheric ozone, and tropospheric aerosols. For each pollutant, we provide a description of the major sources and the mechanism of forcing. We also provide the first seasonally averaged forcing and corresponding temperature response estimates focused specifically on the Arctic. The calculations indicate that the forcings due to black carbon, methane, and tropospheric ozone lead to a positive surface temperature response indicating the need to reduce emissions of these species within and outside the Arctic. Additional aerosol species may also lead to surface warming if the aerosol is coincident with thin, low lying clouds. We suggest strategies for reducing the warming based on current knowledge and discuss directions for future research to address the large remaining uncertainties.
- Sanderson, M, Frank Dentener, Arlene M Fiore, C Cuvelier, T J Keating, A Zuber, C Atherton, D J Bergmann, T Diehl, R Doherty, B N Duncan, Peter G Hess, and Larry W Horowitz, et al., 2008: A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophysical Research Letters, 35, L17815, DOI:10.1029/2008GL035389.
Fifteen chemistry-transport models are used to quantify, for the first time, the export of oxidised nitrogen (NOy) to and from four regions (Europe, North America, South Asia, and East Asia), and to estimate the uncertainty in the results. Between 12 and 24% of the NOx emitted is exported from each region annually. The strongest impact of each source region on a foreign region is: Europe on East Asia, North America on Europe, South Asia on East Asia, and East Asia on North America. Europe exports the most NOy, and East Asia the least. East Asia receives the most NOy from the other regions. Between 8 and 15% of NOx emitted in each region is transported over distances larger than 1000 km, with 3–10% ultimately deposited over the foreign regions.
- Shindell, Drew, H Teich, Mian Chin, Frank Dentener, R Doherty, G Faluvegi, and Arlene M Fiore, et al., September 2008: A multi-model assessment of pollution transport to the Arctic. Atmospheric Chemistry and Physics, 8(17), DOI:10.5194/acp-8-5353-2008.
We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute ~40% of total BC deposition to Greenland, with ~20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physics and removal. Comparison of aerosols with observations indicates problems in either the models or interpretation of the measurements. For gas phase pollutants such as CO and O3, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity.
- Donner, Leo J., Larry W Horowitz, Arlene M Fiore, Charles J Seman, Donald R Blake, and N J Blake, 2007: Transport of radon-222 and methyl iodide by deep convection in the GFDL Global Atmospheric Model AM2. Journal of Geophysical Research, 112, D17303, DOI:10.1029/2006JD007548.
Transport of radon-222 and methyl iodide by deep convection is analyzed in the Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model 2 (AM2) using two parameterizations for deep convection. One of these parameterizations represents deep convection as an ensemble of entraining plumes; the other represents deep convection as an ensemble of entraining plumes with associated mesoscale updrafts and downdrafts. Although precipitation patterns are generally similar in AM2 with both parameterizations, the deep convective mass fluxes are more than three times larger in the middle- to upper troposphere for the parameterization consisting only of entraining plumes, but do not extend across the tropopause, unlike the parameterization including mesoscale circulations. The differences in mass fluxes result mainly from a different partitioning between convective and stratiform precipitation; the parameterization including mesoscale circulations detrains considerably more water vapor in the middle troposphere and is associated with more stratiform rain. The distributions of both radon-222 and methyl iodide reflect the different mass fluxes. Relative to observations (limited by infrequent spatial and temporal sampling), AM2 tends to simulate lower concentrations of radon-222 and methyl iodide in the planetary boundary layer, producing a negative model bias through much of the troposphere, with both cumulus parameterizations. The shapes of the observed profiles suggest that the larger deep convective mass fluxes and associated transport in the parameterization lacking a mesoscale component are less realistic.
- Horowitz, Larry W., Arlene M Fiore, G P Milly, R C Cohen, A Perring, P J Wooldridge, Peter G Hess, Louisa K Emmons, and Jean-Francois Lamarque, 2007: Observational constraints on the chemistry of isoprene nitrates over the eastern United States. Journal of Geophysical Research, 112, D12S08, DOI:10.1029/2006JD007747.
The formation of organic nitrates during the oxidation of the biogenic hydrocarbon isoprene can strongly affect boundary layer concentrations of ozone and nitrogen oxides (NOx = NO + NO2). We constrain uncertainties in the chemistry of these isoprene nitrates using chemical transport model simulations in conjunction with observations over the eastern United States from the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign during summer 2004. The model best captures the observed boundary layer concentrations of organic nitrates and their correlation with ozone using a 4% yield of isoprene nitrate production from the reaction of isoprene hydroxyperoxy radicals with NO, a recycling of 40% NOx when isoprene nitrates react with OH and ozone, and a fast dry deposition rate of isoprene nitrates. Simulated boundary layer concentrations are only weakly sensitive to the rate of photochemical loss of the isoprene nitrates. An 8% yield of isoprene nitrates degrades agreement with the observations somewhat, but concentrations are still within 50% of observations and thus cannot be ruled out by this study. Our results indicate that complete recycling of NOx from the reactions of isoprene nitrates and slow rates of isoprene nitrate deposition are incompatible with the observations. We find that ~50% of the isoprene nitrate production in the model occurs via reactions of isoprene (or its oxidation products) with the NO3 radical, but note that the isoprene nitrate yield from this pathway is highly uncertain. Using recent estimates of rapid reaction rates with ozone, 20–24% of isoprene nitrates are lost via this pathway, implying that ozonolysis is an important loss process for isoprene nitrates. Isoprene nitrates are shown to have a major impact on the nitrogen oxide (NOx = NO + NO2) budget in the summertime U.S. continental boundary layer, consuming 15–19% of the emitted NOx , of which 4–6% is recycled back to NOx and the remainder is exported as isoprene nitrates (2–3%) or deposited (8–10%). Our constraints on reaction rates, branching ratios, and deposition rates need to be confirmed through further laboratory and field measurements. The model systematically underestimates free tropospheric concentrations of organic nitrates, indicating a need for future investigation of the processes controlling the observed distribution.
- West, J J., Arlene M Fiore, Vaishali Naik, Larry W Horowitz, M Daniel Schwarzkopf, and D L Mauzerall, March 2007: Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions. Geophysical Research Letters, 37, L06806, DOI:10.1029/2006GL029173.
Changes in emissions of ozone (O3) precursors affect both air quality and climate. We first examine the sensitivity of surface O3 concentrations (O3 srf) and net radiative forcing of climate (RFnet) to reductions in emissions of four precursors - nitrogen oxides (NO x ), non-methane volatile organic compounds, carbon monoxide, and methane (CH4). We show that long-term CH4-induced changes in O3, known to be important for climate, are also relevant for air quality; for example, NO x reductions increase CH4, causing a long-term O3 increase that partially counteracts the direct O3 decrease. Second, we assess the radiative forcing resulting from actions to improve O3 air quality by calculating the ratio of ΔRFnet to changes in metrics of O3 srf. Decreases in CH4 emissions cause the greatest RFnet decrease per unit reduction in O3 srf, while NO x reductions increase RFnet. Of the available means to improve O3 air quality, therefore, CH4 abatement best reduces climate forcing.
- Dentener, Frank, J Drevet, Jean-Francois Lamarque, I Bey, B Eickhout, Arlene M Fiore, Didier Hauglustaine, Larry W Horowitz, M Krol, U C Kulshrestha, M G Lawrence, Corinne Galy-Lacaux, S Rast, Drew Shindell, David S Stevenson, Twan van Noije, C Atherton, N Bell, D Bergman, T Butler, J Cofala, B Collins, R Doherty, K Ellingsen, J Galloway, M Gauss, V Montanaro, J F Müller, G Pitari, J Rodriguez, M Sanderson, F Solmon, S Strahan, Martin G Schultz, Kengo Sudo, Sophie Szopa, and O Wild, 2006: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003, DOI:10.1029/2005GB002672.
We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the maximum emissions reductions currently technologically feasible (MFR); and (3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60–70% of the model-calculated wet deposition rates agree to within ±50% with quality-controlled measurements. Models systematically overestimate NHx deposition in South Asia, and underestimate NOy deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NOy, NHx, and SOx, leading to ±1 σ variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36–51% of all NOy, NHx, and SOx is deposited over the ocean, and 50–80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the world's natural vegetation receives nitrogen deposition in excess of the “critical load” threshold of 1000 mg(N) m−2 yr−1. The regions most affected are the United States (20% of vegetation), western Europe (30%), eastern Europe (80%), South Asia (60%), East Asia (40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m−2 yr−1 increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NOy are offset by further increases for NHx deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa.
- Dentener, Frank, David S Stevenson, K Ellingsen, Twan van Noije, Martin G Schultz, Larry W Horowitz, and Arlene M Fiore, et al., 2006: The Global Atmospheric Environment for the Next Generation. Environmental Science & Technology, 40(11), DOI:10.1021/es0523845.
Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, while the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models and show a reasonable agreement with surface ozone, wet deposition, and NO2 satellite observations. Large parts of the world are currently exposed to high ozone concentrations and high deposition of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 ± 1.2 ppb (CLE) and 4.3 ± 2.2 ppb (A2), using the ensemble mean model results and associated ±1 standard deviations. Only the progressive MFR scenario will reduce ozone, by -2.3 ± 1.1 ppb. Climate change is expected to modify surface ozone by -0.8 ± 0.6 ppb, with larger decreases over sea than over land. Radiative forcing by ozone increases by 63 ± 15 and 155 ± 37 mW m-2 for CLE and A2, respectively, and decreases by -45 ± 15 mW m-2 for MFR. We compute that at present 10.1% of the global natural terrestrial ecosystems are exposed to nitrogen deposition above a critical load of 1 g N m-2 yr-1. These percentages increase by 2030 to 15.8% (CLE), 10.5% (MFR), and 25% (A2). This study shows the importance of enforcing current worldwide air quality legislation and the major benefits of going further. Nonattainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment. --------------------------------------------------------------------------------
- Fiore, Arlene M., Larry W Horowitz, Edward J Dlugokencky, and J Jason West, 2006: Impact of meteorology and emissions on methane trends, 1990-2004. Geophysical Research Letters, 33, L12809, DOI:10.1029/2006GL026199.
Over the past century, atmospheric methane (CH4) rose dramatically before leveling off in the late 1990s. The processes controlling this trend are poorly understood, limiting confidence in projections of future CH4. The MOZART-2 global tropospheric chemistry model qualitatively captures the observed CH4 trend (increasing in the early 1990s and then leveling off) with constant emissions. From 1991–1995 to 2000–2004, the CH4 lifetime versus tropospheric OH decreases by 1.6%, reflecting increases in OH and temperature. The rise in OH stems from an increase in lightning NOx as parameterized in the model. A simulation including annually varying anthropogenic and wetland CH4 emissions, as well as the changes in meteorology, best reproduces the observed CH4 distribution, trend, and seasonal cycles. Projections of future CH4 abundances should consider climate-driven changes in CH4 sources and sinks.
- Shindell, Drew, G Faluvegi, David S Stevenson, M Krol, Louisa K Emmons, Jean-Francois Lamarque, Gabrielle Pétron, Frank Dentener, Martin G Schultz, K Ellingsen, O Wild, Arlene M Fiore, and Larry W Horowitz, et al., 2006: Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. Journal of Geophysical Research, 111, D19306, DOI:10.1029/2006JD007100.
We analyze present-day and future carbon monoxide (CO) simulations in 26 state-of-the-art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year-round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south-central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 ± 3.5 ppbv (16%) for the high-emissions (A2) scenario, by 1.7 ± 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 ± 2.3 ppbv (11%) for the low-emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 ± 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10–20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year-round under A2, with the largest changes over central Africa (20–30 ppbv), southern Brazil (20–35 ppbv) and south and east Asia (30–70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the world's populated areas.
- Stevenson, David S., Frank Dentener, M Schulz, K Ellingsen, Twan van Noije, O Wild, Arlene M Fiore, and Larry W Horowitz, et al., 2006: Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research, 111, D08301, DOI:10.1029/2005JD006338.
Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing “optimistic,” “likely,” and “pessimistic” options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of −50, 180, and 300 mW m−2, compared to a CO2 forcing over the same time period of 800–1100 mW m−2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000, and 550 Tg(O3) yr−1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O3)) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each model's ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprene's degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations.
- van Noije, Twan, H J Eskes, Frank Dentener, David S Stevenson, K Ellingsen, Martin G Schultz, O Wild, M Amann, C Atherton, D J Bergmann, I Bey, K F Boersma, T Butler, J Cofala, J Drevet, Arlene M Fiore, M Gauss, Didier Hauglustaine, Larry W Horowitz, I Isaksen, M Krol, Jean-Francois Lamarque, M G Lawrence, Randall V Martin, V Montanaro, J F Müller, G Pitari, Michael J Prather, J A Pyle, A Richter, J Rodriguez, N H Savage, S Strahan, Kengo Sudo, Sophie Szopa, and M van Roozendael, 2006: Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000. Atmospheric Chemistry and Physics, 6, 2943-2979.
We present a systematic comparison of tropospheric NO2 from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO2 column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO2 column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NOx emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO2 abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NOx emissions from satellite retrievals of tropospheric NO2 are strongly dependent on the choice of model and retrieval. Full Article in PDF (1875 KB) Discussion Paper Library Search ACP Library Search ACPD Special Services Printer-friendly Version Bookmark Download Acrobat Reader News ISI Impact Factor: 4.362 (2006) more ISI Special Report on ACP more Most Commented Papers more Personalised Publication Alert Service more New Licence and Copyright Agreement for Publications more We present a systematic comparison of tropospheric NO2 from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO2 column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO2 column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NOx emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO2 abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NOx emissions from satellite retrievals of tropospheric NO2 are strongly dependent on the choice of model and retrieval.
- West, J J., Arlene M Fiore, Larry W Horowitz, and D L Mauzerall, 2006: Global health benefits of mitigating ozone pollution with methane emission controls. Proceedings of the National Academy of Sciences, 103(11), DOI:10.1073/pnas.0600201103.
Methane (CH4) contributes to the growing global background concentration of tropospheric ozone (O3), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent 30,000 premature all-cause mortalities globally in 2030, and 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be $420,000 per avoided mortality. If avoided mortalities are valued at $1 million each, the benefit is $240 per tonne of CH4 ($12 per tonne of CO2 equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO2. Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy. human health | mortality | tropospheric ozone | air quality
- Fiore, Arlene M., Larry W Horowitz, D W Purves, Hiram Levy II, M J Evans, Yan Wang, Q Li, and R M Yantosca, June 2005: Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States. Journal of Geophysical Research, 110, D12303, DOI:10.1029/2004JD005485.
Reducing surface ozone (O3) to concentrations in compliance with the national air quality standard has proven to be challenging, despite tighter controls on O3 precursor emissions over the past few decades. New evidence indicates that isoprene emissions changed considerably from the mid-1980s to the mid-1990s owing to land-use changes in the eastern United States (Purves et al., 2004). Over this period, U.S. anthropogenic VOC (AVOC) emissions decreased substantially. Here we apply two chemical transport models (GEOS-CHEM and MOZART-2) to test the hypothesis, put forth by Purves et al. (2004), that the absence of decreasing O3 trends over much of the eastern United States may reflect a balance between increases in isoprene emissions and decreases in AVOC emissions. We find little evidence for this hypothesis; over most of the domain, mean July afternoon (1300–1700 local time) surface O3 is more responsive (ranging from -9 to +7 ppbv) to the reported changes in anthropogenic NOx emissions than to the concurrent isoprene (-2 to +2 ppbv) or AVOC (-2 to 0 ppbv) emission changes. The estimated magnitude of the O3 response to anthropogenic NOx emission changes, however, depends on the base isoprene emission inventory used in the model. The combined effect of the reported changes in eastern U.S. anthropogenic plus biogenic emissions is insufficient to explain observed changes in mean July afternoon surface O3 concentrations, suggesting a possible role for decadal changes in meteorology, hemispheric background O3, or subgrid-scale chemistry. We demonstrate that two major uncertainties, the base isoprene emission inventory and the fate of isoprene nitrates (which influence surface O3 in the model by -15 to +4 and +4 to +12 ppbv, respectively), preclude a well-constrained quantification of the present-day contribution of biogenic or anthropogenic emissions to surface O3 concentrations, particularly in the high-isoprene-emitting southeastern United States. Better constraints on isoprene emissions and chemistry are needed to quantitatively address the role of isoprene in eastern U.S. air quality.
- West, J J., and Arlene M Fiore, 2005: Management of Tropospheric Ozone by Reducing Methane Emissions. Environmental Science & Technology, 39(13), DOI:10.1021/es048629f.
Background concentrations of tropospheric ozone are increasing and are sensitive to methane emissions, yet methane mitigation is currently considered only for climate change. Methane control is shown here to be viable for ozone management. Identified global abatement measures can reduce ~10% of anthropogenic methane emissions at a cost-savings, decreasing surface ozone by 0.4-0.7 ppb. Methane controls produce ozone reductions that are widespread globally and are realized gradually (~12 yr). In contrast, controls on nitrogen oxides (NOX) and nonmethane volatile organic compounds (NMVOCs) target high-ozone episodes in polluted regions and affect ozone rapidly but have a smaller climate benefit. A coarse estimate of the monetized global benefits of ozone reductions for agriculture, forestry, and human health (neglecting ozone mortality) justifies reducing ~17% of global anthropogenic methane emissions. If implemented, these controls would decrease ozone by ~1 ppb and radiative forcing by ~0.12 W m-2. We also find that climate-motivated methane reductions have air quality-related ancillary benefits comparable to those for CO2. Air quality planning should consider reducing methane emissions alongside NOX and NMVOCs, and because the benefits of methane controls are shared internationally, industrialized nations should consider emphasizing methane in the further development of climate change or ozone policies.
- Liu, H, D J Jacob, Jack E Dibb, Arlene M Fiore, and R M Yantosca, April 2004: Constraints on the sources of tropospheric ozone from 210 Pb-7 Be-O3 correlations. Journal of Geophysical Research, 109(D7), D07306, DOI:10.1029/2003JD003988.
The 210Pb-7Be-O 3 relationships observed in three aircraft missions over the western Pacific (PEM-West A and B, TRACE-P) are simulated with a global three-dimensional chemical tracer model (GEOS-CHEM) driven by assimilated meteorological observations. Results are interpreted in terms of the constraints that they offer on sources of tropospheric ozone (O3). Aircraft observations of fresh Asian outflow show strong 210Pb-O3 correlations in September–October, but such correlations are only seen at low latitudes in February–March. Observations further downwind over the Pacific show stronger 210Pb-O3 correlations in February–March than in September–October. The model reproduces these results and attributes the seasonal contrast to strong O3 production and vertical mixing over east Asia in September–October, seasonal shift of convection from China in September–October to Southeast Asia in February–March, and slow but sustained net O3 production in Asian outflow over the western Pacific in February–March. Seasonal biomass burning over Southeast Asia in February–March is responsible for the positive 210Pb-O3 correlations observed at low latitudes. The model reproduces the observed absence of 7Be-O3 correlations over the western Pacific during September–October, implying strong convective and weak stratospheric influence on O3. Comparison of observed and simulated 7Be-O3 correlations indicates that the stratosphere contributes less than 20–30% of O3 in the middle troposphere at northern midlatitudes even during spring.
- Martin, Randall V., Arlene M Fiore, and Aaron Van Donkelaar, 2004: Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophysical Research Letters, 31, L06120, DOI:10.1029/2004GL019416.
We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NOx ≡ NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NOx than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.
- Fiore, Arlene M., T Holloway, and M G Hastings, 2003: A global perspective on Air Quality: Intercontinental transport and linkages with Climate. EM, 13-22.
Linkages between climate and the intercontinental transport (ICT) of ozone and aerosols offer opportunities for coordinated mitigation of air pollution and global warming. This article considers the ICT of ozone and aerosols among Asia, Europe, and North America, and highlights linkages between air quality and climate that might benefit future emissions control strategies.
- Fiore, Arlene M., D J Jacob, H Liu, R M Yantosca, T D A Fairlie, and Q Li, 2003: Variability in surface ozone background over the United States: Implications for air quality policy. Journal of Geophysical Research, 108, D24,2487, DOI:10.1029/2003JD003855.
The U.S. Environmental Protection Agency (EPA) presently uses a 40 ppbv background O3 level as a baseline in its O3 risk assessments. This background is defined as those concentrations that would exist in the absence of North American emissions. Lefohn et al. [2001] have argued that frequent occurrences of O3 concentrations above 50–60 ppbv at remote northern U.S. sites in spring are of stratospheric origin, challenging the EPA background estimate and implying that the current O3 standard (84 ppbv, 8-hour average) may be unattainable. We show that a 3-D global model of tropospheric chemistry reproduces much of the observed variability in U.S. surface O3 concentrations, including the springtime high-O3 events, with only a minor stratospheric contribution (always <20 ppbv). We conclude that the previous interpretations of a stratospheric source for these events underestimated the role of regional and hemispheric pollution. While stratospheric intrusions might occasionally elevate surface O3 at high-altitude sites, our results indicate that these events are rare and would not compromise the O3 air quality standard. We find that the O3 background is generally 15–35 ppbv, with some incidences of 40–50 ppbv in the west in spring at high-elevation sites (>2 km). It declines from spring to summer and further decreases during O3 pollution episodes. The 40 ppbv background assumed by EPA thus actually underestimates the risk associated with O3 during polluted conditions. A better definition would represent background as a function of season, altitude, and total surface O3 concentration. Natural O3 levels are typically 10–25 ppbv and never exceed 40 ppbv. International controls to reduce the hemispheric pollution background would facilitate compliance with an AOT40-type standard (cumulative exposure to O3 above 40 ppbv) in the United States.
- Fiore, Arlene M., D J Jacob, R. Mathur, and Randall V Martin, 2003: Application of empirical orthogonal functions to evaluate ozone simulations with regional and global models. Journal of Geophysical Research, 108(14), 4431, DOI:10.1029/2002JD003151.
Empirical orthogonal functions are used together with standard statistical metrics to evaluate the ability of models with different spatial resolutions to reproduce observed patterns of surface ozone (O3) in the eastern United States in the summer of 1995. We examine simulations with the regional Multiscale Air Quality Simulation Platform model (horizontal resolution of 36 km2) and the global GEOS-CHEM model (2° × 2.5° and 4° × 5°). As the model resolution coarsens, the ability to resolve local O3 maxima (O3 ≥ 90 ppbv) is compromised, but the spatial correlation improves. This result shows that synoptic-scale processes modulating O3 concentrations are easier to capture in models than processes occurring on smaller scales. Empirical orthogonal functions (EOFs) derived from the observed O3 fields reveal similar modes of variability when averaged onto the three model horizontal resolutions. The EOFs appear to represent (1) an east-west pattern associated with frontal passages, (2) a midwest-northeast pattern associated with migratory high-pressure systems, and (3) a southeast stagnation pattern linked to westward extension of the Bermuda High. All models capture the east-west and southeast EOFs, but the midwest-northeast EOF is misplaced in GEOS-CHEM. GEOS-CHEM captures the principal components of the observational EOFs when the model fields are projected onto these EOFs, implying that it can resolve the contribution of the EOFs to the observed variance. We conclude that coarse-resolution global models can successfully simulate the synoptic conditions leading to high-O3 episodes in the eastern United States.
- Holloway, T, Arlene M Fiore, and M G Hastings, 2003: Intercontinental Transport of Air Pollution: Will Emerging Science Lead to a New Hemispheric Treaty? Environmental Science & Technology, 37(20), 4535-4542.
We examine the emergence of InterContinental Transport (ICT) of air pollution on the agendas of the air quality and climate communities and consider the potential for a new treaty on hemispheric air pollution. ICT is the flow of air pollutants from a source continent (e.g., North America) to a receptor continent (e.g., Europe). ICT of air pollutants occurs through two mechanisms: (i) episodic advection and (ii) increasing the global background, which enhances surface concentrations. We outline the current scientific evidence for ICT of aerosols and ozone, both of which contribute to air pollution and radiative forcing. The growing body of scientific evidence for ICT suggests that a hemispheric-scale treaty to reduce air pollutant concentra tions may be appropriate to address climate and air quality concerns simultaneously. Such a treaty could pave the way for future climate agreements. --------------------------------------------------------------------------------
- Palmer, P I., D J Jacob, Arlene M Fiore, Randall V Martin, K Chance, and A Abe-Ouchi, 2003: Mapping isoprene emissions over North America using formaldehyde column observations from space. Journal of Geophysical Research, 108(D6), 4180, DOI:10.1029/2002JD002153.
We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%).
- Fiore, Arlene M., D J Jacob, B D Field, D G Streets, S D Fernandes, and Carey Jang, 2002: Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters, 29(19), 1919, DOI:10.1029/2002GL015601.
Methane (CH4) emission controls are found to be a powerful lever for reducing both global warming and air pollution via decreases in background tropospheric ozone (O3). Reducing anthropogenic CH4 emissions by 50% nearly halves the incidence of U.S. high-O3 events and lowers global radiative forcing by 0.37 W m−2 (0.30 W m−2 from CH4, 0.07 W m−2 from O3) in a 3-D model of tropospheric chemistry. A 2030 simulation based upon IPCC A1 emissions projections shows a longer and more intense U.S. O3 pollution season despite domestic emission reductions, indicating that intercontinental transport and a rising O3 background should be considered when setting air quality goals.
- Fiore, Arlene M., D J Jacob, I Bey, R M Yantosca, B D Field, A C Fusco, and J G Wilkinson, 2002: Background ozone over the United States in summer: Origin, trend, and contribution to pollution episodes. Journal of Geophysical Research, 107(D15), 4275, DOI:10.1029/2001JD000982.
Methane (CH4) emission controls are found to be a powerful lever for reducing both global warming and air pollution via decreases in background tropospheric ozone (O3). Reducing anthropogenic CH4 emissions by 50% nearly halves the incidence of U.S. high-O3 events and lowers global radiative forcing by 0.37 W m−2 (0.30 W m−2 from CH4, 0.07 W m−2 from O3) in a 3-D model of tropospheric chemistry. A 2030 simulation based upon IPCC A1 emissions projections shows a longer and more intense U.S. O3 pollution season despite domestic emission reductions, indicating that intercontinental transport and a rising O3 background should be considered when setting air quality goals.
- Li, Q, D J Jacob, I Bey, P I Palmer, B N Duncan, B D Field, Randall V Martin, and Arlene M Fiore, et al., 2002: Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. Journal of Geophysical Research, 107(D13), 4166, DOI:10.1029/2001JD001422.
We examine the transatlantic transport of anthropogenic ozone and its impact on surface ozone in Europe and North America by using a 5-year (1993–1997) simulation with the GEOS-CHEM global three-dimensional model of tropospheric chemistry. Long-term time series of ozone and CO at Mace Head (Ireland) and Sable Island (Canada) are used to evaluate transatlantic transport in the model. North American anthropogenic emissions contribute on average 5 ppbv to surface ozone at Mace Head, and up to 10–20 ppbv during transatlantic transport events, which are forerunners of broader events in Europe. These events are associated with low-level westerly flow driven by an intense Icelandic low between Iceland and the British Isles. North American influence on ozone at Mace Head is strongly correlated with the North Atlantic Oscillation (NAO), implying that the NAO index can be used to forecast transatlantic transport of North American pollution to Europe. European anthropogenic emissions contribute on average less than 2 ppbv to surface ozone at Sable Island but up to 5–10 ppbv during transatlantic transport events. These events are associated with low-level easterly flow established by anomalous low pressure at 45°N over the North Atlantic. North American anthropogenic emissions enhance surface ozone in continental Europe by 2–4 ppbv on average in summer and by 5–10 ppbv during transatlantic transport events; transport in the boundary layer and subsidence from the free troposphere are both important mechanisms. We find in the model that 20% of the violations of the European Council ozone standard (55 ppbv, 8-hour average) in the summer of 1997 over Europe would not have occurred in the absence of anthropogenic emissions from North America. North American influence on surface ozone in Europe is particularly strong at the thresholds used for the European standards (55–65 ppbv).
- Martin, Randall V., K Chance, D J Jacob, T P Kurosu, R J D Spurr, E Bucsela, J F Gleason, P I Palmer, I Bey, and Arlene M Fiore, et al., 2002: An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical Research, 107(D20), 4437, DOI:10.1029/2001JD001027.
We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude-dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMF by 20–30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p < 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal region of South Africa and industrial regions of the northeast United States and Europe. They are lower over Houston, India, eastern Asia, and the biomass burning region of central Africa, possibly because of biases from absorbing aerosols.
- Martin, Randall V., D J Jacob, J Logan, I Bey, R M Yantosca, A C Staudt, Q B Li, and Arlene M Fiore, et al., 2002: Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. Journal of Geophysical Research, 107(D18), DOI:10.1029/2001JD001480.
We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern tropical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOCs over biomass burning regions by 3–5 Dobson units (DU) and decreases them by 2–5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by ∼5 DU the magnitude of the “tropical Atlantic paradox” [ Thompson et al., 2000 ], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December–February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, persistent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African “westerly duct.” These processes in the model can also account for the observed 13–17 DU persistent wave-1 pattern in TTOCs with a maximum over the tropical Atlantic and a minimum over the tropical Pacific during all seasons. The photochemical effects of mineral dust have only a minor role on the modeled distribution of TTOCs, including over northern Africa, due to multiple competing effects. The photochemical effects of mineral dust globally decrease annual mean OH concentrations by 9%. A global lightning NOx source of 6 Tg N yr−1 in the model produces a simulation that is most consistent with TOMS and in situ observations.
- Martin, Randall V., Arlene M Fiore, and Paul Ginoux, et al., 2002: Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. Journal of Geophysical Research, 107(D18), 4351, DOI:10.1029/2001JD001480.
We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern tropical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOCs over biomass burning regions by 3–5 Dobson units (DU) and decreases them by 2–5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by ~5 DU the magnitude of the ‘‘tropical Atlantic paradox’’ [Thompson et al., 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December–February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, persistent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African ‘‘westerly duct.’’ These processes in the model can also account for the observed 13–17 DU persistent wave-1 pattern in TTOCs with a maximum over the tropical Atlantic and a minimum over the tropical Pacific during all seasons. The photochemical effects of mineral dust have only a minor role on the modeled distribution of TTOCs, including over northern Africa, due to multiple competing effects. The photochemical effects of mineral dust globally decrease annual mean OH concentrations by 9%. A global lightning NOx source of 6 Tg N yr-1 in the model produces a simulation that is most consistent with TOMS and in situ observations.
- Bey, I, D J Jacob, R M Yantosca, J Logan, B D Field, and Arlene M Fiore, et al., 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research, 106(D19), 23,073-23,095.
We present a first description and evaluation of GEOS-CHEM, a global threedimensional (3-D) model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO). The model is applied to a 1-year simulation of tropospheric ozone-NO x -hydrocarbon chemistry for 1994, and is evaluated with observations both for 1994 and for other years. It reproduces usually to within 10 ppb the concentrations of ozone observed from the worldwide ozonesonde data network. It simulates correctly the seasonal phases and amplitudes of ozone concentrations for different regions and altitudes, but tends to underestimate the seasonal amplitude at northern midlatitudes. Observed concentrations of NO and peroxyacetylnitrate (PAN) observed in aircraft campaigns are generally reproduced to within a factor of 2 and often much better. Concentrations of HNO3 in the remote troposphere are overestimated typically by a factor of 2–3, a common problem in global models that may reflect a combination of insufficient precipitation scavenging and gas-aerosol partitioning not resolved by the model. The model yields an atmospheric lifetime of methylchloroform (proxy for global OH) of 5.1 years, as compared to a best estimate from observations of 5.5 +/− 0.8 years, and simulates H2O2 concentrations observed from aircraft with significant regional disagreements but no global bias. The OH concentrations are ∼20% higher than in our previous global 3-D model which included an UV-absorbing aerosol. Concentrations of CO tend to be underestimated by the model, often by 10–30 ppb, which could reflect a combination of excessive OH (a 20% decrease in model OH could be accommodated by the methylchloroform constraint) and an underestimate of CO sources (particularly biogenic). The model underestimates observed acetone concentrations over the South Pacific in fall by a factor of 3; a missing source from the ocean may be implicated.
- Li, Q B., D J Jacob, J Logan, I Bey, R M Yantosca, H Liu, Randall V Martin, and Arlene M Fiore, et al., 2001: A Tropospheric Ozone Maximum Over the Middle East. Geophysical Research Letters, 28(17), 3235-3238.
The GEOS-CHEM global 3-D model of tropospheric chemistry predicts a summertime O3 maximum over the Middle East, with mean mixing ratios in the middle and upper troposphere in excess of 80 ppbv. This model feature is consistent with the few observations from commercial aircraft in the region. Its origin in the model reflects a complex interplay of dynamical and chemical factors, and of anthropogenic and natural influences. The anticyclonic circulation in the middle and upper troposphere over the Middle East funnels northern midlatitude pollution transported in the westerly subtropical jet as well as lightning outflow from the Indian monsoon and pollution from eastern Asia transported in an easterly tropical jet. Large-scale subsidence over the region takes place with continued net production of O3 and little mid-level outflow. Transport from the stratosphere does not contribute significantly to the O3 maximum. Sensitivity simulations with anthropogenic or lightning emissions shut off indicate decreases of 20-30% and 10-15% respectively in the tropospheric O3 column over the Middle East. More observations in this region are needed to confirm the presence of the O3 maximum.
- Lin, C-Y C., D J Jacob, and Arlene M Fiore, 2001: Trends in exceedances of the ozone air quality standard in the continental United States, 1980-1998. Atmospheric Environment, 35(19), 3217-3228.
In 1997, the United States National Ambient Air Quality Standard (NAAQS) for ozone was revised from a 1-h average of 0.12 parts per million (ppm) to an 8-h average of 0.08 ppm. Analysis of ozone data for the ensemble of the contiguous United States and for the period 1980–1998 shows that the average number of summer days per year in exceedance of the new standard is in the range 8–24 in the Northeast and in Texas, and 12–73 in southern California. The probability of exceedance increases with temperature and exceeds 20% in the Northeast for daily maximum temperatures above 305 K. We present the results of several different approaches to analyzing the long-term trends in the old and new standards over the continental United States from 1980 to 1998. Daily temperature data are used to resolve meteorological variability and isolate the effects of changes in anthropogenic emissions. Significant negative trends are found in the Northeast urban corridor, in the Los Angeles Basin and on the western bank of Lake Michigan.Temperature segregation enhances the detection of negative trends. Positive trends occur at isolated sites, mostly in the Southeast; a strong positive trend is found in Nashville (Tennessee). There is some evidence that, except in the Southwest, air quality improvements from the 1980s to the 1990s have leveled off in the past decade.
- Palmer, P I., D J Jacob, K Chance, Randall V Martin, R J D Spurr, T P Kurosu, I Bey, R M Yantosca, Arlene M Fiore, and Q B Li, 2001: Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment. Journal of Geophysical Research, 106(D13), 14,539-14,550.
We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are computed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20–40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be ∼10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.
- Lin, C-Y C., D J Jacob, J W Munger, and Arlene M Fiore, 2000: Increasing Background Ozone in Surface Air Over the United States. Geophysical Research Letters, 27(21), 3465-3468.
The long-term trend of background O3 in surface air over the United States from 1980 to 1998 is examined using monthly probability distributions of daily maximum 8-hour average O3 concentrations at a large ensemble of rural sites. Ozone concentrations have decreased at the high end of the probability distribution (reflecting emission controls) but have increased at the low end. The cross-over takes place between the 30th and 50th percentiles in May-August and between the 60th and 90th percentiles during the rest of the year. The increase is statistically significant at a 5% level in spring and fall, when it is 3-5 ppbv. The maximum increase is in the Northeast. A possible explanation is an increase in the O3 background transported from outside the United States. Better understanding of the causes of the increase is needed because of its implications for meeting O3 air quality standards.
- Fiore, Arlene M., D J Jacob, J Logan, and Jianjun Yin, 1998: Long-term trends in ground level ozone over the contiguous United States, 1980–1995. Journal of Geophysical Research, 103(D1), 1471-1480.
Long-term trends of median and 90th percentile summer afternoon O3 concentrations were examined at 549 sites across the United States for the 1980–1995 period. Daily temperature data were used to account for the variability in O3 concentrations associated with temperature. Both before and after segregating the O3 data by temperature, trends were insignificant over most of the continental United States. No region of the United States experienced a significant increase in O3 concentrations during the 1980–1995 period. Decreasing trends were predominantly clustered in the three largest metropolitan areas: New York City, Los Angeles, and Chicago. In these areas, additional sites with trends were identified in the temperature-segregated analysis. Correlation of trends with local anthropogenic emissions of nitrogen oxides (NO x = NO + NO2) and volatile organic compounds (VOC) indicates a greater frequency of decreasing trends for urban sites with high emission. National emission inventories for the United States indicate that anthropogenic VOC emissions decreased by 12% over the 1980–1995 period while NO x emissions remained constant. The observed O3 trends are consistent with the view that summertime O3 production over the United States is NO x -limited except in the largest metropolitan areas where it is partly VOC-limited.
- Liang, J, Larry W Horowitz, D J Jacob, Yan Wang, and Arlene M Fiore, et al., 1998: Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere. Journal of Geophysical Research, 103(D11), 13,435-13,450.
A three-dimensional, continental-scale photochemical model is used to investigate seasonal budgets of O3 and NO y species (including NO x and its oxidation products) in the boundary layer over the United States and to estimate the export of these species from the U.S. boundary layer to the global atmosphere. Model results are evaluated with year-round observations for O3, CO, and NO y species at nonurban sites. A seasonal transition from NO x to hydrocarbon-limited conditions for O3 production over the eastern United States is found to take place in the fall, with the reverse transition taking place in the spring. The mean NO x /NO y molar ratio in the U.S. boundary layer in the model ranges from 0.2 in summer to 0.6 in winter, in accord with observations, and reflecting largely the seasonal variation in the chemical lifetime of NO x . Formation of hydroxy organic nitrates during oxidation of isoprene, followed by decomposition of these nitrates to HNO3, is estimated to account for 30% of the chemical sink of NO x in the U.S. boundary layer in summer. Model results indicate that peroxyacylnitrates (PANs) are most abundant in the U.S. boundary layer in spring (25% of total NO y .), reflecting a combination of active photochemistry and low temperatures. About 20% of the NO x emitted from fossil fuel combustion in the United States in the model is exported out of the U.S. boundary layer as NO x or PANs (15% in summer, 25% in winter). This export responds less than proportionally to changes in NO x emissions in summer, but more than proportionally in winter. The annual mean export of NO x and PANs from the U.S. boundary layer is estimated to be 1.4 Tg N yr−1, representing an important source of NO x on the scale of the northern hemisphere troposphere. The eventual O3 production in the global troposphere due to the exported NO x and PANs is estimated to be twice as large, on an annual basis, as the direct export of O3 pollution from the U.S. boundary layer. Fossil fuel combustion in the United States is estimated to account for about 10% of the total source of O3 in the northern hemisphere troposphere on an annual basis
Direct link to page: http://www.gfdl.noaa.gov/bibliography/results.php?author=1040