We present a variable-resolution global chemistry-climate model (AM4VR) developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) for research at the nexus of US climate and air quality extremes. AM4VR has a horizontal resolution of 13 km over the US, allowing it to resolve urban-to-rural chemical regimes, mesoscale convective systems, and land-surface heterogeneity. With the resolution gradually reducing to 100 km over the Indian Ocean, we achieve multi-decadal simulations driven by observed sea surface temperatures at 50% of the computational cost for a 25-km uniform-resolution grid. In contrast with GFDL's AM4.1 contributing to the sixth Coupled Model Intercomparison Project at 100 km resolution, AM4VR features much improved US climate mean patterns and variability. In particular, AM4VR shows improved representation of: precipitation seasonal-to-diurnal cycles and extremes, notably reducing the central US dry-and-warm bias; western US snowpack and summer drought, with implications for wildfires; and the North American monsoon, affecting dust storms. AM4VR exhibits excellent representation of winter precipitation, summer drought, and air pollution meteorology in California with complex terrain, enabling skillful prediction of both extreme summer ozone pollution and winter haze events in the Central Valley. AM4VR also provides vast improvements in the process-level representations of biogenic volatile organic compound emissions, interactive dust emissions from land, and removal of air pollutants by terrestrial ecosystems. We highlight the value of increased model resolution in representing climate–air quality interactions through land-biosphere feedbacks. AM4VR offers a novel opportunity to study global dimensions to US air quality, especially the role of Earth system feedbacks in a changing climate.
Malsang, Manon, Laure Resplandy, Laurent Bopp, Yangyang Zhao, Sam J Ditkovsky, Fan Yang, Fabien Paulot, and Marina Lévy, October 2024: Contemporary decline in northern Indian Ocean primary production weakly offset by rising atmospheric nitrogen deposition. Frontiers in Marine Science, 11, DOI:10.3389/fmars.2024.1418634. Abstract
Since 1980, atmospheric pollutants in South Asia and India have dramatically increased in response to industrialization and agricultural development, enhancing the atmospheric deposition of anthropogenic nitrogen in the northern Indian Ocean and potentially promoting primary productivity. Concurrently, ocean warming has increased stratification and limited the supply of nutrients supporting primary productivity. Here, we examine the biogeochemical consequences of increasing anthropogenic atmospheric nitrogen deposition and contrast them with the counteracting effect of warming, using a regional ocean biogeochemical model of the northern Indian Ocean forced with atmospheric nitrogen deposition derived from an Earth System Model. Our results suggest that the 60% recent increase in anthropogenic nitrogen deposition over the northern Indian Ocean provided external reactive nitrogen that only weakly enhanced primary production (+10 mg C.m–2.d–1.yr–1 in regions of intense deposition) and secondary production (+4 mg C.m–2.d–1.yr–1). However, we find that locally this enhancement can significantly offset the declining trend in primary production over the last four decades in the central Arabian Sea and western Bay of Bengal, whose magnitude are up to -20 and -10 mg C.m–2.d–1.yr–1 respectively.
Paulot, Fabien, Gabrielle Pétron, Andrew M Crotwell, and Matteo B Bertagni, April 2024: Reanalysis of NOAA H2 observations: Implications for the H2 budget. Atmospheric Chemistry and Physics, 24(7), DOI:10.5194/acp-24-4217-20244217-4229. Abstract
Hydrogen (H2) is a promising low-carbon alternative to fossil fuels for many applications. However, significant gaps in our understanding of the atmospheric H2 budget limit our ability to predict the impacts of greater H2 usage. Here we use NOAA H2 dry air mole fraction observations from air samples collected from ground-based and ship platforms during 2010–2019 to evaluate the representation of H2 in the NOAA GFDL-AM4.1 atmospheric chemistry-climate model. We find that the base model configuration captures the observed interhemispheric gradient well but underestimates the surface concentration of H2 by about 10 ppb. Additionally, the model fails to reproduce the 1–2 ppb yr−1 mean increase in surface H2 observed at background stations. We show that the cause is most likely an underestimation of current anthropogenic emissions, including potential leakages from H2-producing facilities. We also show that changes in soil moisture, soil temperature, and snow cover have most likely caused an increase in the magnitude of the soil sink, the most important removal mechanism for atmospheric H2, especially in the Northern Hemisphere. However, there remains uncertainty due to fundamental gaps in our understanding of H2 soil removal, such as the minimum moisture required for H2 soil uptake, for which we performed extensive sensitivity analyses. Finally, we show that the observed meridional gradient of the H2 mixing ratio and its seasonality can provide important constraints to test and refine parameterizations of the H2 soil sink.
Stratospheric injections of sulfur dioxide from major volcanic eruptions perturb the Earth's global radiative balance and dominate variability in stratospheric sulfur loading. The atmospheric component of the GFDL Earth System Model (ESM4.1) uses a bulk aerosol scheme and previously prescribed the distribution of aerosol optical properties in the stratosphere. To quantify volcanic contributions to the stratospheric sulfur cycle and the resulting climate impact, we modified ESM4.1 to simulate stratospheric sulfate aerosols prognostically. Driven by explicit volcanic emissions of aerosol precursors and non-volcanic sources, we conduct ESM4.1 simulations from 1989 to 2014, with a focus on the Mt. Pinatubo eruption. We evaluate our interactive representation of the stratospheric sulfur cycle against data from Moderate Resolution Imaging Spectroradiometer, Multi-angle Imaging SpectroRadiometer, Advanced Very High Resolution Radiometer, High Resolution Infrared Radiation Sounder, and Stratospheric Aerosol and Gas Experiment II. To assess the key processes associated with volcanic aerosols, we performed a sensitivity analysis of sulfate burden from the Mt. Pinatubo eruption by varying injection heights, emission amount, and stratospheric sulfate's dry effective radius. We find that the simulated stratospheric sulfate mass burden and aerosol optical depth in the model are sensitive to these parameters, especially volcanic SO2 injection height, and the optimal combination of parameters depends on the metric we evaluate.
Guo, Yixin, Haiyue Tan, Lin Zhang, Gang Liu, Mi Zhou, Julius Vira, Peter G Hess, Xueying Liu, Fabien Paulot, and Xuejun Liu, August 2023: Global food loss and waste embodies unrecognized harms to air quality and biodiversity hotspots. Nature Food, 4, DOI:10.1038/s43016-023-00810-0686-698. Abstract
Global food loss and waste (FLW) undermines the resilience and sustainability of food systems and is closely tied to the United Nation’s Sustainable Development Goals on climate, resource use and food security. Here we reveal strong yet under-discussed interconnections between FLW and two other Sustainable Development Goals of Human Health and Life on Land via the nitrogen cycle. We find that eliminating global FLW in 2015 would have reduced anthropogenic NH3 emissions associated with food production by 11.4 Tg (16%), decreased local PM2.5 concentrations by up to 5 μg m−3 and PM2.5-related years of life lost by 1.5 million years, and mitigated nitrogen critical load exceedances in global biodiversity hotspots by up to 19%. Halving FLW in 2030 will reduce years of life lost by 0.5–0.8 million years and nitrogen deposition by 4.7–6.0 Tg N per year (4%) (range for socioeconomic pathways). Complementary to near-term NH3 mitigation potential via technological measures, our study emphasizes incentivizing FLW reduction efforts from air quality and ecosystem health perspectives.
Sand, Maria, Ragnhild B Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, Hannah Bryant, Richard G Derwent, Didier Hauglustaine, Fabien Paulot, Michael J Prather, and David S Stevenson, June 2023: A multi-model assessment of the Global Warming Potential of hydrogen. Communications Earth and Environment, 4, 203, DOI:10.1038/s43247-023-00857-8. Abstract
With increasing global interest in molecular hydrogen to replace fossil fuels, more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas, but its chemical reactions change the abundances of the greenhouse gases methane, ozone, and stratospheric water vapor, as well as aerosols. Here, we use a model ensemble of five global atmospheric chemistry models to estimate the 100-year time-horizon Global Warming Potential (GWP100) of hydrogen. We estimate a hydrogen GWP100 of 11.6 ± 2.8 (one standard deviation). The uncertainty range covers soil uptake, photochemical production of hydrogen, the lifetimes of hydrogen and methane, and the hydroxyl radical feedback on methane and hydrogen. The hydrogen-induced changes are robust across the different models. It will be important to keep hydrogen leakages at a minimum to accomplish the benefits of switching to a hydrogen economy.
Tang, Weiyi, Bess B Ward, Michael Beman, Laura Bristow, Darren Clark, S E Fawcett, Claudia Frey, François Fripiat, Gerhard J Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E Santoro, Takuhei Shiozaki, Eva Sintes, Charles A Stock, Xin Sun, Xianhui S Wan, Min N Xu, and Yao Zhang, November 2023: Database of nitrification and nitrifiers in the global ocean. Earth System Science Data, 15(11), DOI:10.5194/essd-15-5039-20235039-5077. Abstract
As a key biogeochemical pathway in the marine nitrogen cycle, nitrification (ammonia oxidation and nitrite oxidation) converts the most reduced form of nitrogen – ammonium–ammonia (NH+4–NH3) – into the oxidized species nitrite (NO−2) and nitrate (NO−3). In the ocean, these processes are mainly performed by ammoniaoxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). By transforming nitrogen speciation and providing substrates for nitrogen removal, nitrification affects microbial community structure; marine productivity (including chemoautotrophic carbon fixation); and the production of a powerful greenhouse gas, nitrous oxide (N2O). Nitrification is hypothesized to be regulated by temperature, oxygen, light, substrate concentration, substrate flux, pH and other environmental factors. Although the number of field observations from various oceanic regions has increased considerably over the last few decades, a global synthesis is lacking, and understanding how environmental factors control nitrification remains elusive. Therefore, we have compiled a database of nitrification rates and nitrifier abundance in the global ocean from published literature and unpublished datasets. This database includes 2393 and 1006 measurements of ammonia oxidation and nitrite oxidation rates and 2242 and 631 quantifications of ammonia oxidizers and nitrite oxidizers, respectively. This community effort confirms and enhances our understanding of the spatial distribution of nitrification and nitrifiers and their corresponding drivers such as the important role of substrate concentration in controlling nitrification rates and nitrifier abundance. Some conundrums are also revealed, including the inconsistent observations of light limitation and high rates of nitrite oxidation reported from anoxic waters. This database can be used to constrain the distribution of marine nitrification, to evaluate and improve biogeochemical models of nitrification, and to quantify the impact of nitrification on ecosystem functions like marine productivity and N2O production. This database additionally sets a baseline for comparison with future observations and guides future exploration (e.g., measurements in the poorly sampled regions such as the Indian Ocean and method comparison and/or standardization). The database is publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.8355912 (Tang et al., 2023).
Beale, Christopher A., and Fabien Paulot, et al., September 2022: Large sub-regional differences of ammonia seasonal patterns over India reveal inventory discrepancies. Environmental Research Letters, 17(10), DOI:10.1088/1748-9326/ac881f. Abstract
Ammonia (NH3) is a key precursor of haze particles and fine particulate matter (PM2.5) and its spatiotemporal variabilities are poorly constrained. In this study, we present measurements of NH3 over the Indian subcontinent region from the Infrared Atmospheric Sounder Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) satellite instruments. This region exhibits a complex emission profile due to the number of varied sources, including crop burning, fossil fuel combustion, fertilizer application, livestock and industrial sources. Observations from the CrIS and IASI instruments are oversampled to a resolution of 0.02° × 0.02°. Five regions with distinct spatiotemporal NH3 profiles are determined using k-means clustering. Maximum NH3 columns are seen in July over the western India with column densities of 6.2 × 1017 mol cm−2 and 7.2 × 1017 mol cm−2 respectively for IASI and CrIS. The seasonality of measured NH3 columns show annual maxima occurring in spring in Eastern India and Bangladesh and in mid-summer for the western Indo-Gangetic plain. Our observational constraints suggest that the impact of local farming practices on NH3 emissions is not well captured in emission inventories such as Coupled Model Intercomparison Project Phase 6 (CMIP6), which exhibits peaks in the late spring and autumn. The spatial variability in the seasonal patterns of NH3 is also not captured by the single emissions profile used in CMIP6 for India. The high-resolution maps obtained from these measurements can be used to improve NH3 emission inventories in order to understand its sources for more accurate predictions of air quality in the Indian subcontinent. Our study points to the need for regionally specific emissions inventories for short-lived species such as NH3 that have heterogeneous emissions profiles due to specific agricultural practices and other emission source characteristics.
Bertagni, Matteo B., Stephen W Pacala, Fabien Paulot, and Amilcare Porporato, December 2022: Risk of the hydrogen economy for atmospheric methane. Nature Communications, 13, 7706, DOI:10.1038/s41467-022-35419-7. Abstract
Hydrogen (H2) is expected to play a crucial role in reducing greenhouse gas emissions. However, hydrogen losses to the atmosphere impact atmospheric chemistry, including positive feedback on methane (CH4), the second most important greenhouse gas. Here we investigate through a minimalist model the response of atmospheric methane to fossil fuel displacement by hydrogen. We find that CH4 concentration may increase or decrease depending on the amount of hydrogen lost to the atmosphere and the methane emissions associated with hydrogen production. Green H2 can mitigate atmospheric methane if hydrogen losses throughout the value chain are below 9 ± 3%. Blue H2 can reduce methane emissions only if methane losses are below 1%. We address and discuss the main uncertainties in our results and the implications for the decarbonization of the energy sector.
Bubbles bursting at the ocean surface are an important source of ocean-spray aerosol, with implications on radiative and cloud processes. Yet, very large uncertainties exist on the role of key physical controlling parameters, including wind speed, sea state and water temperature. We propose a mechanistic sea spray generation function that is based on the physics of bubble bursting. The number and mean droplet radius of jet and film drops is described by scaling laws derived from individual bubble bursting laboratory and numerical experiments, as a function of the bubble radius and the water physico-chemical properties (viscosity, density and surface tension, all functions of temperature), with drops radii at production from 0.1 to 500 µm. Next, we integrate over the bubble size distribution entrained by breaking waves. Finally, the sea spray generation function is obtained by considering the volume flux of entrained bubbles due to breaking waves in the field constrained by the third moment of the breaking distribution (akin to the whitecap coverage). This mechanistic approach naturally integrates the role of wind and waves via the breaking distribution and entrained air flux, and a sensitivity to temperature via individual bubble bursting mechanisms. The resulting sea spray generation function has not been tuned or adjusted to match any existing data sets, in terms of magnitude of sea salt emissions and recently observed temperature dependencies. The remarkable coherence between the model and observations of sea salt emissions therefore strongly supports the mechanistic approach and the resulting sea spray generation function.
Fu, Joshua, Gregory R Carmichael, Frank Dentener, Wenche Aas, Camilla Andersson, Leonard Barrie, Amanda Cole, Corinne Galy-Lacaux, Jeffrey Geddes, Syuichi Itahashi, Maria Kanakidou, Lorenzo Labrador, Fabien Paulot, Donna Schwede, Jiani Tan, and Robert Vet, January 2022: Improving estimates of sulfur, nitrogen, and ozone total deposition through multi-model and measurement-model fusion approaches. Environmental Science & Technology, 56, 4, DOI:10.1021/acs.est.1c059292134-2142. Abstract
Earth system and environmental impact studies need high quality and up-to-date estimates of atmospheric deposition. This study demonstrates the methodological benefits of multimodel ensemble and measurement-model fusion mapping approaches for atmospheric deposition focusing on 2010, a year for which several studies were conducted. Global model-only deposition assessment can be further improved by integrating new model-measurement techniques, including expanded capabilities of satellite observations of atmospheric composition. We identify research and implementation priorities for timely estimates of deposition globally as implemented by the World Meteorological Organization.
Hauglustaine, Didier, Fabien Paulot, William D Collins, Richard G Derwent, Maria Sand, and Olivier Boucher, November 2022: Climate benefit of a future hydrogen economy. Communications Earth and Environment, 3, 295, DOI:10.1038/s43247-022-00626-z. Abstract
Hydrogen is recognised as an important future energy vector for applications in many sectors. Hydrogen is an indirect climate gas which induces perturbations of methane, ozone, and stratospheric water vapour, three potent greenhouse gases. Using data from a state-of-the-art global numerical model, here we calculate the hydrogen climate metrics as a function of the considered time-horizon and derive a 100-year Global Warming Potential of 12.8 ± 5.2 and a 20-year Global Warming Potential of 40.1 ± 24.1. The considered scenarios for a future hydrogen transition show that a green hydrogen economy is beneficial in terms of mitigated carbon dioxide emissions for all policy-relevant time-horizons and leakage rates. In contrast, the carbon dioxide and methane emissions associated with blue hydrogen reduce the benefit of a hydrogen economy and lead to a climate penalty at high leakage rate or blue hydrogen share. The leakage rate and the hydrogen production pathways are key leverages to reach a clear climate benefit from a large-scale transition to a hydrogen economy.
We analyze the relationship between fine particulate matter (PM2.5) and meteorology in winter in the Indo-Gangetic Plain (IGP). We find that the concentration of PM2.5 exhibits similar increase with decreasing surface wind speed in 15 out of 18 cities considered. Using this observed relationship, we estimate that the reduction of surface wind speed with increasing CO2 simulated by models participating in the Coupled Model Intercomparison Project Phase 6 will result in higher average wintertime PM2.5 concentrations (1% per degree K of global warming) and more frequent high-pollution events. This observation-based estimate is qualitatively consistent with the simulated response of black carbon to global warming inferred from the AerChemMIP ssp370SST and ssp370pdSST experiments. We hypothesize that a reduction in the frequency and intensity of western disturbances with increasing CO2 may contribute to the reduction in the surface wind in the IGP.
Quaas, Johannes, Hailing Jia, C A Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, M Wild, Gunnar Myhre, and M Schulz, September 2022: Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmospheric Chemistry and Physics, 22(18), DOI:10.5194/acp-22-12221-202212221-12239. Abstract
Anthropogenic aerosols exert a cooling influence that offsets part of the greenhouse gas warming. Due to their short tropospheric lifetime of only several days, the aerosol forcing responds quickly to emissions. Here, we present and discuss the evolution of the aerosol forcing since 2000. There are multiple lines of evidence that allow us to robustly conclude that the anthropogenic aerosol effective radiative forcing (ERF) – both aerosol–radiation interactions (ERFari) and aerosol–cloud interactions (ERFaci) – has become less negative globally, i.e. the trend in aerosol effective radiative forcing changed sign from negative to positive. Bottom-up inventories show that anthropogenic primary aerosol and aerosol precursor emissions declined in most regions of the world; observations related to aerosol burden show declining trends, in particular of the fine-mode particles that make up most of the anthropogenic aerosols; satellite retrievals of cloud droplet numbers show trends in regions with aerosol declines that are consistent with these in sign, as do observations of top-of-atmosphere radiation. Climate model results, including a revised set that is constrained by observations of the ocean heat content evolution show a consistent sign and magnitude for a positive forcing relative to the year 2000 due to reduced aerosol effects. This reduction leads to an acceleration of the forcing of climate change, i.e. an increase in forcing by 0.1 to 0.3 W m−2, up to 12 % of the total climate forcing in 2019 compared to 1750 according to the Intergovernmental Panel on Climate Change (IPCC).
Aas, Wenche, Leonard Barrie, Camilla Andersson, Gregory R Carmichael, Amanda Cole, Frank Dentener, Johannes Flemming, Joshua Fu, Corinne Galy-Lacaux, Jeffrey Geddes, Maria Kanakidou, Lorenzo Labrador, Fabien Paulot, Donna Schwede, Oksana Tarasova, and Robert Vet, 2021: Measurement-Model Fusion for Global Total Atmospheric Deposition Initiative: Implementation Plan for 2021-2026, Geneva, Switzerland: World Meteorological Organization, GAW Report No. 269, 52pp.
Bertagni, Matteo B., Fabien Paulot, and Amilcare Porporato, December 2021: Moisture fluctuations modulate abiotic and biotic limitations of H2 soil uptake. Global Biogeochemical Cycles, 35(12), DOI:10.1029/2021GB006987. Abstract
Soil uptake by H2-oxidizing bacteria is the main sink of the global hydrogen cycle, accounting for nearly 80% of the atmospheric H2 consumption. Although the H2 uptake is strongly influenced by soil moisture, little attention has been paid to coherently couple the water and hydrogen dynamics in soils. Toward this goal, we improve the mechanistic representation of the H2 uptake as a function of soil moisture and highlight the role of the moisture temporal fluctuations on the biotic consumption of H2. The results show that, due to the strongly nonlinear relationship between soil moisture and H2 uptake, addressing the dry-wet sequences is necessary to characterize the H2 uptake in semi-arid regions correctly. From novel analytical relationships validated with field data, we also infer the biotic and abiotic limitations in the global soil H2 uptake. It is shown that, diffusion generally limits the uptake in humid temperate and tropical regions, while biotic limitations tend to occur in very arid or cold soils. Finally, we discuss the implications that climate change may have on the H2 soil sink.
The Coronavirus Disease 2019 (COVID‐19) pandemic led to a widespread reduction in aerosol emissions. Using satellite observations and climate model simulations, we study the underlying mechanisms of the large decreases in solar clear‐sky reflection (3.8 W m−2 or 7%) and aerosol optical depth (0.16 W m−2 or 32%) observed over the East Asian Marginal Seas in March 2020. By separating the impacts from meteorology and emissions in the model simulations, we find that about one‐third of the clear‐sky anomalies can be attributed to pandemic‐related emission reductions, and the rest to weather variability and long‐term emission trends. The model is skillful at reproducing the observed interannual variations in solar all‐sky reflection, but no COVID‐19 signal is discerned. The current observational and modeling capabilities will be critical for monitoring, understanding, and predicting the radiative forcing and climate impacts of the ongoing crisis.
Nault, Benjamin A., Pedro Campuzano-Jost, Douglas A Day, Duseong S Jo, Jason C Schroder, Hannah M Allen, Roya Bahreini, Huisheng Bian, Donald R Blake, Mian Chin, Simon L Clegg, Peter R Colarco, John D Crounse, Michael J Cubison, Peter F DeCarlo, Jack E Dibb, Glenn S Diskin, Alma Hodzic, Weiwei Hu, Joseph M Katich, Michelle J Kim, John K Kodros, Agnieszka Kupc, Felipe D Lopez-Hilfiker, Eloise A Marais, Ann M Middlebrook, J Andrew Neuman, John B Nowak, Brett B Palm, and Fabien Paulot, et al., May 2021: Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth and Environment, 2, 93, DOI:10.1038/s43247-021-00164-0. Abstract
The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R2 < 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.
Hydrogen (H2) has been proposed as an alternative energy carrier to reduce the carbon footprint and associated radiative forcing of the current energy system. Here, we describe the representation of H2 in the GFDL-AM4.1 model including updated emission inventories and improved representation of H2 soil removal, the dominant sink of H2. The model best captures the overall distribution of surface H2, including regional contrasts between climate zones, when vd(H2) is modulated by soil moisture, temperature, and soil carbon content. We estimate that the soil removal of H2 increases with warming (2–4% per K), with large uncertainties stemming from different regional response of soil moisture and soil carbon. We estimate that H2 causes an indirect radiative forcing of 0.84 mW m−2/(Tg(H2)yr−1) or 0.13 mW m−2 ppbv−1, primarily due to increasing CH4 lifetime and stratospheric water vapor production.
Su, Wenying, Lusheng Liang, Gunnar Myhre, Tyler J Thorsen, Norman G Loeb, Gregory L Schuster, Paul Ginoux, and Fabien Paulot, et al., September 2021: Understanding top-of-atmosphere flux bias in the AeroCom phase III models: A clear-sky perspective. Journal of Advances in Modeling Earth Systems, 13(9), DOI:10.1029/2021MS002584. Abstract
Biases in aerosol optical depths (AOD) and land surface albedos in the AeroCom models are manifested in the top-of-atmosphere (TOA) clear-sky reflected shortwave (SW) fluxes. Biases in the SW fluxes from AeroCom models are quantitatively related to biases in AOD and land surface albedo by using their radiative kernels. Over ocean, AOD contributes about 25% to the 60°S - 60°N mean SW flux bias for the multi-model mean (MMM) result. Over land, AOD and land surface albedo contribute about 40% and 30%, respectively, to the 60°S - 60°N mean SW flux bias for the MMM result. Furthermore, the spatial patterns of the SW flux biases derived from the radiative kernels are very similar to those between models and CERES observation, with the correlation coefficient of 0.6 over ocean and 0.76 over land for MMM using data of 2010. Satellite data used in this evaluation are derived independently from each other, consistencies in their bias patterns when compared with model simulations suggest that these patterns are robust. This highlights the importance of evaluating related variables in a synergistic manner to provide an unambiguous assessment of the models, as results from single parameter assessments are often confounded by measurement uncertainty. Model biases in land surface albedos can and must be corrected to accurately calculate TOA flux. We also compare the AOD trend from three models with the observation-based counterpart. These models reproduce all notable trends in AOD except the decreasing trend over eastern China and the adjacent oceanic regions due to limitations in the emission data set.
Szopa, Sophie, Vaishali Naik, Bhupesh Adhikary, Paulo Artaxo, Terje Berntsen, William D Collins, Sandro Fuzzi, Laura Gallardo, Astrid Kiendler-Scharr, Zbigniew Klimont, Hong Liao, Nadine Unger, Prodromos Zanis, Paul Ginoux, Jian He, and Fabien Paulot, et al., August 2021: Short-Lived Climate Forcers In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, DOI:10.1017/9781009157896.008817-922.
Thornhill, Gillian D., William J Collins, Dirk Olivié, Ragnhild B Skeie, Alexander T Archibald, Susanne E Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry W Horowitz, Jean-Francois Lamarque, Martine Michou, Jane P Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M O'Connor, and Fabien Paulot, et al., January 2021: Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 21(2), DOI:10.5194/acp-21-1105-20211105-1126. Abstract
Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify.
This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change.
We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of CO2 concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models.
Wang, Rui, Xuehui Guo, Da Pan, James T Kelly, Jesse O Bash, Kang Sun, and Fabien Paulot, et al., March 2021: Monthly patterns of ammonia over the contiguous United States at 2 km resolution. Geophysical Research Letters, 48(5), DOI:10.1029/2020GL090579. Abstract
Monthly, high‐resolution (∼2 km) ammonia (NH3) column maps from the Infrared Atmospheric Sounding Interferometer (IASI) were developed across the contiguous United States and adjacent areas. Ammonia hotspots (95th percentile of the column distribution) were highly localized with a characteristic length scale of 12 km and median area of 152 km2. Five seasonality clusters were identified with k‐means++ clustering. The Midwest and eastern United States had a broad, spring maximum of NH3 (67% of hotspots in this cluster). The western United States, in contrast, showed a narrower midsummer peak (32% of hotspots). IASI spatiotemporal clustering was consistent with those from the Ammonia Monitoring Network. CMAQ and GFDL‐AM3 modeled NH3 columns have some success replicating the seasonal patterns but did not capture the regional differences. The high spatial‐resolution monthly NH3 maps serve as a constraint for model simulations and as a guide for the placement of future, ground‐based network sites.
Baublitz, C B., Arlene M Fiore, Olivia E Clifton, Jingqiu Mao, J Li, G Correa, Daniel M Westervelt, Larry W Horowitz, Fabien Paulot, and A Park Williams, April 2020: Sensitivity of tropospheric ozone over the Southeast USA to dry deposition. Geophysical Research Letters, 47(7), DOI:10.1029/2020GL087158. Abstract
Dry deposition (DD) is a major loss process for tropospheric ozone and some reactive nitrogen and carbon precursors. We investigate the response of summertime ozone and its production chemistry over the Southeast United States (USA) to variability in this sink. Turning off DD of oxidized nitrogen, ozone, or all species over the USA in the GFDL AM3 model increases regional mean surface ozone by 5, 18 or 25 ppb, respectively. Additional sensitivity simulations demonstrate that, assuming linearity, surface ozone has a similar sensitivity to ozone DD as to NOx emissions. Trends in ozone production efficiency derived from observed relationships between ozone and precursor oxidation products may not solely reflect precursor emission changes if ozone DD varies (e.g. with meteorology). We conclude that DD variability merits consideration when interpreting observed ozone trends. Quantifying the impact of changes in sinks versus sources will require long‐term DD measurements across the region of interest.
Identifying the contributions of chemistry and transport to observed ozone pollution using regional‐to‐global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry‐climate model ‐‐ in which the atmosphere and land are coupled through dry deposition ‐‐ to investigate the influence of ozone dry deposition on ozone pollution over northern mid‐latitudes. In our model, deposition pathways are tied to dynamic terrestrial processes, such as photosynthesis and water cycling through the canopy and soil. Small increases in winter deposition due to more process‐based representation of snow and deposition to surfaces reduce hemispheric‐scale ozone through the lower troposphere by 5‐12 ppb, improving agreement with observations relative to a simulation with the standard configuration for ozone dry deposition. Declining snow cover by the end of the 21st century tempers the previously identified influence of rising methane on winter ozone. Dynamic dry deposition changes summer surface ozone by ‐4 to +7 ppb. While previous studies emphasize the importance of uptake by plant stomata, new diagnostic tracking of depositional pathways reveals a widespread impact of nonstomatal deposition on ozone pollution. Daily variability in both stomatal and nonstomatal deposition contribute to daily variability in ozone pollution. 21st‐century changes in summer deposition result from a balance among changes in individual pathways, reflecting differing responses to both high carbon dioxide (through plant physiology versus biomass accumulation) and water availability. Our findings highlight a need for constraints on the processes driving ozone dry deposition to test representation in regional‐to‐global models.
Clifton, Olivia E., Danica L Lombardozzi, Arlene M Fiore, Fabien Paulot, and Larry W Horowitz, November 2020: Stomatal conductance influences interannual variability and long-term changes in regional cumulative plant uptake of ozone. Environmental Research Letters, 15, DOI:10.1088/1748-9326/abc3f1. Abstract
Ambient ozone uptake by plant stomata degrades ecosystem and crop health and alters local-to-global carbon and water cycling. Metrics for ozone plant damage are often based solely on ambient ozone concentrations, overlooking the role of variations in stomatal activity. A better metric is the cumulative stomatal uptake of ozone (CUO), which indicates the amount of ozone entering the leaf over time available to cause physiological damage. Here we apply the NOAA GFDL global earth system model to assess the importance of capturing interannual variations and 21st century changes in surface ozone versus stomatal conductance for regional mean CUO using 20-year time-slice simulations at the 2010s and 2090s for a high-warming climate and emissions scenario. The GFDL model includes chemistry-climate interactions and couples atmospheric and land components through not only carbon, water, and energy exchanges, but also reactive trace gases—in particular, ozone dry deposition simulated by the land influences surface ozone concentrations. Our 20-year time slice simulations hold anthropogenic precursor emissions, well-mixed greenhouse gases, and land use distributions fixed at either 2010 or 2090 values. We find that CUO responds much more strongly to interannual and daily variability in stomatal conductance than in ozone. On the other hand, long-term changes in ozone explain 44%–90% of the annual CUO change in regions with decreases, largely driven by the impact of 21st century anthropogenic NOx emission trends on summer surface ozone. In some regions, increases in stomatal conductance from the 2010s to 2090s counteract the influence of lower ozone on CUO. We also find that summertime stomatal closure under high carbon dioxide levels can offset the impacts of higher springtime leaf area (e.g. earlier leaf out) and associated stomatal conductance on CUO. Our findings underscore the importance of considering plant physiology in assessing ozone vegetation damage, particularly in quantifying year-to-year changes.
We describe the baseline coupled model configuration and simulation characteristics of GFDL's Earth System Model Version 4.1 (ESM4.1), which builds on component and coupled model developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation contributing to the sixth phase of the Coupled Model Intercomparison Project. In contrast with GFDL's CM4.0 development effort that focuses on ocean resolution for physical climate, ESM4.1 focuses on comprehensiveness of Earth system interactions. ESM4.1 features doubled horizontal resolution of both atmosphere (2° to 1°) and ocean (1° to 0.5°) relative to GFDL's previous‐generation coupled ESM2‐carbon and CM3‐chemistry models. ESM4.1 brings together key representational advances in CM4.0 dynamics and physics along with those in aerosols and their precursor emissions, land ecosystem vegetation and canopy competition, and multiday fire; ocean ecological and biogeochemical interactions, comprehensive land‐atmosphere‐ocean cycling of CO2, dust and iron, and interactive ocean‐atmosphere nitrogen cycling are described in detail across this volume of JAMES and presented here in terms of the overall coupling and resulting fidelity. ESM4.1 provides much improved fidelity in CO2 and chemistry over ESM2 and CM3, captures most of CM4.0's baseline simulations characteristics, and notably improves on CM4.0 in (1) Southern Ocean mode and intermediate water ventilation, (2) Southern Ocean aerosols, and (3) reduced spurious ocean heat uptake. ESM4.1 has reduced transient and equilibrium climate sensitivity compared to CM4.0. Fidelity concerns include (1) moderate degradation in sea surface temperature biases, (2) degradation in aerosols in some regions, and (3) strong centennial scale climate modulation by Southern Ocean convection.
We describe the baseline model configuration and simulation characteristics of the Geophysical Fluid Dynamics Laboratory (GFDL)'s Atmosphere Model version 4.1 (AM4.1), which builds on developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation as part of the sixth phase of the Coupled Model Intercomparison Project. In contrast with GFDL's AM4.0 development effort, which focused on physical and aerosol interactions and which is used as the atmospheric component of CM4.0, AM4.1 focuses on comprehensiveness of Earth system interactions. Key features of this model include doubled horizontal resolution of the atmosphere (~200 to ~100 km) with revised dynamics and physics from GFDL's previous‐generation AM3 atmospheric chemistry‐climate model. AM4.1 features improved representation of atmospheric chemical composition, including aerosol and aerosol precursor emissions, key land‐atmosphere interactions, comprehensive land‐atmosphere‐ocean cycling of dust and iron, and interactive ocean‐atmosphere cycling of reactive nitrogen. AM4.1 provides vast improvements in fidelity over AM3, captures most of AM4.0's baseline simulations characteristics, and notably improves on AM4.0 in the representation of aerosols over the Southern Ocean, India, and China—even with its interactive chemistry representation—and in its manifestation of sudden stratospheric warmings in the coldest months. Distributions of reactive nitrogen and sulfur species, carbon monoxide, and ozone are all substantially improved over AM3. Fidelity concerns include degradation of upper atmosphere equatorial winds and of aerosols in some regions.
Kuai, Le, K W Bowman, H Worden, K Miyazaki, S Kulawik, A J Conley, Jean-Francois Lamarque, Fabien Paulot, and David J Paynter, et al., January 2020: Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites. Atmospheric Chemistry and Physics, 20(1), DOI:10.5194/acp-20-281-2020. Abstract
The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6-μm ozone band is a fundamental quantity for understanding chemistry-climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and surface temperature (Ts). Benchmarking present day fluxes and quantifying the relative influence of their drivers is the first step for estimating climate feedbacks from ozone radiative forcing and predicting its evolution.
To that end, we construct observational instantaneous radiative kernels (IRKs) representing the sensitivities of the TOA flux in the 9.6-μm ozone band to the vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 2006 reanalysis assimilating satellite observations, we show that the models have large differences in TOA flux, attributable to different geophysical variables. In particular, model simulations continue to diverge from observations in the tropics, as reported in previous studies of the Atmospheric Chemistry Climate Model Inter-comparison Project (ACCMIP) simulations. The principal culprits are tropical mid and upper tropospheric ozone followed by tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases exceeding 100 mWm−2 attributable to tropospheric ozone bias. Another set of five models flux biases over 50 mWm−2 due to H2O. On the other hand, Ta radiative bias is negligible in all models (no more than 30 mWm−2). We found that AM3 and CMAM have the lowest TOA flux biases globally but are a result of cancellation of difference processes. Overall, the multi-model ensemble mean bias is −132.9 ± 98 mWm−2, indicating that they are too atmospherically opaque thereby reducing sensitivity of TOA flux to ozone and potentially an underestimate of ozone radiative forcing. We find that the inter-model TOA OLR difference is well anti-correlated with their ozone band flux bias. This suggests that there is significant radiative compensation in the calculation of model outgoing longwave radiation.
Reducing surface ozone to meet the European Union’s target for human health has proven challenging despite stringent controls on ozone precursor emissions over recent decades. The most extreme ozone pollution episodes are linked to heatwaves and droughts, which are increasing in frequency and intensity over Europe, with severe impacts on natural and human systems. Here, we use observations and Earth system model simulations for the period 1960–2018 to show that ecosystem–atmosphere interactions, especially reduced ozone removal by water-stressed vegetation, exacerbate ozone air pollution over Europe. These vegetation feedbacks worsen peak ozone episodes during European mega-droughts, such as the 2003 event, offsetting much of the air quality improvements gained from regional emissions controls. As the frequency of hot and dry summers is expected to increase over the coming decades, this climate penalty could be severe and therefore needs to be considered when designing clean air policy in the European Union.
Recent laboratory and field studies point to an increase of sea salt aerosol (SSA) emissions with temperature, suggesting that SSA may lower climate sensitivity. We assess the impact of a strong (4.2 % K‐1) and weak (0.7% K‐1) temperature response of SSA emissions on the climate sensitivity of the coupled climate model CM4. We find that the stronger temperature dependence improves the simulation of marine aerosol optical depth sensitivity to temperature and lowers CM4 Transient Climate Response (‐0.12K) and Equilibrium Climate Sensitivity (‐0.5K). At CO2 doubling, the higher SSA emission sensitivity causes a negative radiative feedback (‐0.125 W m‐2 K‐1), which can only be partly explained by changes in the radiative effect of SSA (‐0.08 W m‐2 K‐1). Stronger radiative feedbacks are dominated by more negative low‐level clouds feedbacks in the Northern Hemisphere, which are partly offset by more positive feedbacks in the Southern Hemisphere associated with a weaker Atlantic Meridional Overturning Circulation.
The imprint of anthropogenic activities on the marine nitrogen (N) cycle remains challenging to represent in global models, in part because of uncertainties regarding the source of marine N to the atmosphere. While N inputs of terrestrial origin present a truly external perturbation, a significant fraction of N deposition over the ocean arises from oceanic ammonia (NH3) outgassing that is subsequently deposited in other ocean regions. Here, we describe advances in the Geophysical Fluid Dynamics Laboratory's (GFDL) Earth System Model 4 (ESM4.1) aimed at improving the representation of the exchange of N between atmosphere and ocean and its response to changes in ocean acidity and N deposition. We find that the simulated present‐day NH3 outgassing (3.1 TgN yr−1) is 7% lower than under preindustrial conditions, which reflects the compensating effects of increasing CO2 (−16%) and N enrichment of ocean waters (+9%). This change is spatially heterogeneous, with decreases in the open ocean (−13%) and increases in coastal regions (+15%) dominated by coastal N enrichment. The ocean outgassing of ammonia is shown to increase the transport of N from N‐rich to N‐poor ocean regions, where carbon export at 100 m increases by 0.5%. The implications of the strong response of NH3 ocean outgassing to CO2 for the budget of NH3 in the remote marine atmosphere and its imprint in ice cores are discussed.
This contribution describes the ocean biogeochemical component of the Geophysical Fluid Dynamics Laboratory's Earth System Model 4.1 (GFDL‐ESM4.1), assesses GFDL‐ESM4.1's capacity to capture observed ocean biogeochemical patterns, and documents its response to increasing atmospheric CO2. Notable differences relative to the previous generation of GFDL ESM's include enhanced resolution of plankton food web dynamics, refined particle remineralization, and a larger number of exchanges of nutrients across Earth system components. During model spin‐up, the carbon drift rapidly fell below the 10 Pg C per century equilibration criterion established by the Coupled Climate‐Carbon Cycle Model Intercomparison Project (C4MIP). Simulations robustly captured large‐scale observed nutrient distributions, plankton dynamics, and characteristics of the biological pump. The model overexpressed phosphate limitation and open ocean hypoxia in some areas but still yielded realistic surface and deep carbon system properties, including cumulative carbon uptake since preindustrial times and over the last decades that is consistent with observation‐based estimates. The model's response to the direct and radiative effects of a 200% atmospheric CO2 increase from preindustrial conditions (i.e., years 101–120 of a 1% CO2 yr−1 simulation) included (a) a weakened, shoaling organic carbon pump leading to a 38% reduction in the sinking flux at 2,000 m; (b) a two‐thirds reduction in the calcium carbonate pump that nonetheless generated only weak calcite compensation on century time‐scales; and, in contrast to previous GFDL ESMs, (c) a moderate reduction in global net primary production that was amplified at higher trophic levels. We conclude with a discussion of model limitations and priority developments.
We describe GFDL's CM4.0 physical climate model, with emphasis on those aspects that may be of particular importance to users of this model and its simulations. The model is built with the AM4.0/LM4.0 atmosphere/land model and OM4.0 ocean model. Topics include the rationale for key choices made in the model formulation, the stability as well as drift of the pre‐industrial control simulation, and comparison of key aspects of the historical simulations with observations from recent decades. Notable achievements include the relatively small biases in seasonal spatial patterns of top‐of‐atmosphere fluxes, surface temperature, and precipitation; reduced double Intertropical Convergence Zone bias; dramatically improved representation of ocean boundary currents; a high quality simulation of climatological Arctic sea ice extent and its recent decline; and excellent simulation of the El Niño‐Southern Oscillation spectrum and structure. Areas of concern include inadequate deep convection in the Nordic Seas; an inaccurate Antarctic sea ice simulation; precipitation and wind composites still affected by the equatorial cold tongue bias; muted variability in the Atlantic Meridional Overturning Circulation; strong 100 year quasi‐periodicity in Southern Ocean ventilation; and a lack of historical warming before 1990 and too rapid warming thereafter due to high climate sensitivity and strong aerosol forcing, in contrast to the observational record. Overall, CM4.0 scores very well in its fidelity against observations compared to the Coupled Model Intercomparison Project Phase 5 generation in terms of both mean state and modes of variability and should prove a valuable new addition for analysis across a broad array of applications.
The response of ozone (O3) dry deposition to ecosystem‐atmosphere interactions is poorly understood but is central to determining the potential for extreme pollution events under current and future climate conditions. Using observations and an interactive dry deposition scheme within two dynamic vegetation land models (GFDL LM3.0/LM4.0) driven by observation‐based meteorological forcings over 1948‐2014, we investigate the factors controlling seasonal and interannual variability (IAV) in O3 deposition velocities (Vd,O3). Stomatal activity in this scheme is determined mechanistically, depending on phenology, soil moisture, vapor pressure deficit, and CO2 concentration. Soil moisture plays a key role in modulating the observed and simulated Vd,O3 seasonal changes over evergreen forests in Mediterranean Europe, South Asia, and the Amazon. Analysis of multi‐year observations at forest sites in Europe and North America reveals drought stress to reduce Vd,O3 by ~50%. Both LM3.0 and LM4.0 capture the observed Vd,O3 decreases due to drought; however, IAV is weaker by a factor of two in LM3.0 coupled to atmospheric models, particularly in regions with large precipitation biases. IAV in summertime Vd,O3 to forests, driven primarily by the stomatal pathway, is largest (15‐35%) in semi‐arid regions of western Europe, eastern North America, and northeastern China. Monthly mean Vd,O3 for the highest year is two to four times that of the lowest, with significant implications for surface O3 variability and extreme events. Using Vd,O3 from LM4.0 in an atmospheric chemistry model improves the simulation of surface O3 abundance and spatial variability (reduces mean biases by ~10 ppb) relative to the widely‐used Wesely scheme.
A central strategy in achieving greenhouse gas mitigation targets is the transition of vehicles from internal combustion engines to electric power. However, due to complex emission sources and nonlinear chemistry, it is unclear how such a shift might impact air quality. Here we apply a prototype version of the new-generation NOAA GFDL global Atmospheric Model, version 4 (GFDL AM4) to investigate the impact on U.S. air quality from an aggressive conversion of internal combustion vehicles to battery-powered electric vehicles (EVs). We examine a suite of scenarios designed to quantify the effect of both the magnitude of EV market penetration and the source of electricity generation used to power them. We find that summer surface ozone (O3) decreases in most locations due to widespread reductions of traffic NOx emissions. Summer fine particulate matter (PM2.5) increases on average and largest in areas with increased coal-fired power generation demands. Winter O3 increases due to reduced loss via traffic NOx while PM2.5 decreases since larger ammonium nitrate reductions offset increases in ammonium sulfate. The largest magnitude changes are simulated at the extremes of the probability distribution. Increasing the fraction of vehicles converted to EVs further decreases summer O3, while increasing the fraction of electricity generated by “emission-free” sources largely eliminates the increases in summer PM2.5 at high EV adoption fractions. Ultimately, the number of conventional vehicles replaced by EVs has a larger effect on O3 than PM2.5, while the source of the electricity for those EVs exhibit greater control on PM2.5.
Li, J, Jingqiu Mao, Arlene M Fiore, R C Cohen, John D Crounse, A P Teng, P O Wennberg, B H Lee, Felipe D Lopez-Hilfiker, J A Thornton, Jeff Peischl, I B Pollack, Thomas B Ryerson, P R Veres, J M Roberts, J Andrew Neuman, John B Nowak, G M Wolfe, T F Hanisco, A Fried, H B Singh, Jack E Dibb, Fabien Paulot, and Larry W Horowitz, February 2018: Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 18(3), DOI:10.5194/acp-18-2341-2018. Abstract
Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9–12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.
We present observation and model-based estimates of the changes in the direct shortwave effect of aerosols under clear-sky (SDRECS) from 2001 to 2015. Observation-based estimates are obtained from changes in the outgoing shortwave clear-sky radiation (Rsutcs) measured by the Clouds and the Earth's Radiant Energy System (CERES), accounting for the effect of variability in surface albedo, water vapor, and ozone. We find increases in SDRECS (i.e., less radiation scattered to space by aerosols) over Western Europe (0.7–1 W m−2 dec−1) and the Eastern US (0.9–1.8 W m−2 dec−1), decreases over India (−0.5– −1.9 W m−2 dec−1) and no significant change over Eastern China. Comparisons with the GFDL chemistry climate model AM3, driven by CMIP6 historical emissions, show that changes in SDRECS over Western Europe and the Eastern US are well captured, which largely reflects the mature understanding of the sulfate budget in these regions. In contrast, the model overestimates the trends in SDRECS over India and Eastern China. Over China, this bias can be partly attributed to the decline of SO2 emissions after 2007, which is not captured by the CMIP6 emissions. In both India and Eastern China, we find much larger contributions of nitrate and black carbon to changes in SDRECS than in the US and Europe, which highlights the need to better constrain their precursors and chemistry. Globally, our model shows that changes in the all-sky aerosol direct forcing between 2001 and 2015 (+0.03 W m−2) are dominated by black carbon (+0.12 W m−2) with significant offsets from nitrate (−0.03 W m−2) and sulfate (−0.03 W m−2). Changes in the sulfate (+7 %) and nitrate (+60 %) all-sky direct forcing between 2001 and 2015 are only weakly related to changes in the emissions of their precursors (−12.5 % and 19 % for SO2 and NH3, respectively), due mostly to chemical non linearities.
Paulot, Fabien, Sergey Malyshev, T B Nguyen, John D Crounse, Elena Shevliakova, and Larry W Horowitz, December 2018: Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth System Model: implications for present and future nitrogen deposition fluxes over North America. Atmospheric Chemistry and Physics, 18(24), DOI:10.5194/acp-18-17963-2018. Abstract
Reactive nitrogen (N) emissions have increased over the last 150 years as a result of greater fossil fuel combustion and food production. The resulting increase in N deposition can alter the function of ecosystems, but characterizing its ecological impacts remains challenging, in part because of uncertainties in model-based estimates of N dry deposition. Here, we leverage the tiled structure of the land component (LM3) of the Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Model to represent the impact of physical, hydrological, and ecological heterogeneities on the surface removal of chemical tracers. We show that this framework can be used to estimate N deposition at more ecologically-relevant scales (e.g., natural vegetation, water bodies) than from the coarse-resolution global chemistry–climate model (GFDL-AM3). Focusing on North America, we show that the faster removal of N over forested ecosystems relative to cropland and pasture implies that coarse resolution estimates of N deposition from global models systematically underestimate N deposition to natural vegetation by 10 to 30% in the Central and Eastern US. Neglecting the subgrid scale heterogeneity of dry deposition velocities also results in an underestimate (overestimate) of the amount of reduced (oxidized) nitrogen deposited to water bodies. Overall, changes in land cover associated with human activities are found to slow down the removal of N from the atmosphere, causing a reduction in the dry oxidized, dry reduced, and total N deposition over the contiguous US of 8%, 26%, and 6%, respectively. We also find that the reduction in the overall rate of removal of N associated with land-use change tends to increase N deposition on the remaining natural vegetation and facilitate N export to Canada. We show that subgrid scale differences in the surface removal of oxidized and reduced nitrogen imply that near-term (2010–2050) changes in oxidized (−47%) and reduced (+40%) US N emissions will cause opposite changes in N deposition to water bodies (increase) and natural vegetation (decrease) in the Eastern US, with potential implications for acidification and ecosystems.
Northern India (23° N–31° N, 68° E–90° E) is one of the most densely populated and polluted regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the region's pollution regime. We evaluate the ability of a developmental version of the new-generation NOAA GFDL Atmospheric Model, version 4 (AM4) to simulate observed wintertime fine particulate matter (PM2.5) and its relationship to meteorology over Northern India. We compare two simulations of GFDL-AM4 nudged to observed meteorology for the period 1980–2016 driven by pollutant emissions from two global inventories developed in support of the Coupled Model Intercomparison Project Phases 5 (CMIP5) and 6 (CMIP6), and compare results with ground-based observations from India's Central Pollution Control Board (CPCB) for the period 1 October 2015–31 March 2016. Overall, our results indicate that the simulation with CMIP6 emissions, produces improved concentrations of pollutants over the region relative to the CMIP5-driven simulation.
While the particulate concentrations simulated by AM4 are biased low overall, the model generally simulates the magnitude and daily variability of observed total PM2.5. Nitrate and organic matter are the primary components of PM2.5 over Northern India in the model. On the basis of correlations of the individual model components with total observed PM2.5 and correlations between the two simulations, meteorology is the primary driver of daily variability. The model correctly reproduces the shape and magnitude of the seasonal cycle of PM2.5, but the simulated diurnal cycle misses the early evening rise and secondary maximum found in the observations. Observed PM2.5 abundances are by far the highest within the densely populated Indo-Gangetic Plain, where they are closely related to boundary layer meteorology, specifically relative humidity, wind speed, boundary layer height, and inversion strength. The GFDL AM4 model reproduces the overall observed pollution gradient over Northern India as well as the strength of the meteorology-PM2.5 relationship in most locations.
Zhang, L, Y Chen, Y Zhao, D K Henze, L Zhu, Y Song, and Fabien Paulot, et al., January 2018: Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmospheric Chemistry and Physics, DOI:10.5194/acp-18-339-2018. Abstract
Current estimates of agricultural ammonia (NH3) emissions in China differ by more than a factor of 2, hindering our understanding of their environmental consequences. Here we apply both bottom-up statistical and top-down inversion methods to quantify NH3 emissions from agriculture in China for the year 2008. We first assimilate satellite observations of NH3 column concentration from the Tropospheric Emission Spectrometer (TES) using the GEOS-Chem adjoint model to optimize Chinese anthropogenic NH3 emissions at the 1/2° × 2/3° horizontal resolution for March–October 2008. Optimized emissions show a strong summer peak with emissions about 50 % higher in summer than spring and fall, which is underestimated in current bottom-up NH3 emission estimates. To reconcile the latter with the top-down results, we revisit the processes of agricultural NH3 emissions, and develop an improved bottom-up inventory of Chinese NH3 emissions from fertilizer application and livestock waste at the 1/2° × 2/3° resolution. Our bottom-up emission inventory includes more detailed information on crop-specific fertilizer application practices and better accounts for meteorological modulation of NH3 emission factors in China. We find that annual anthropogenic NH3 emissions are 11.7 Tg for 2008 with 5.05 Tg from fertilizer application and 5.31 Tg from livestock waste. The two sources together account for 88 % of total anthropogenic NH3 emissions in China. Our bottom-up emission estimates also show a distinct seasonality peaking in summer, consistent with top-down results from the satellite-based inversion. Further evaluations using surface network measurements show that the model driven by our bottom-up emissions well reproduces the observed spatial and seasonal variations of NH3 gas concentrations and ammonium (NH4+) wet deposition fluxes over China, providing additional credibility to the improvements we have made to our agricultural NH3 emission inventory.
In this two-part paper, a description is provided of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). This version, with roughly 100km horizontal resolution and 33 levels in the vertical, contains an aerosol model that generates aerosol fields from emissions and a “light” chemistry mechanism designed to support the aerosol model but with prescribed ozone. In Part I, the quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode – with prescribed sea surface temperatures (SSTs) and sea ice distribution – is described and compared with previous GFDL models and with the CMIP5 archive of AMIP simulations. The model's Cess sensitivity (response in the top-of-atmosphere radiative flux to uniform warming of SSTs) and effective radiative forcing are also presented. In Part II, the model formulation is described more fully and key sensitivities to aspects of the model formulation are discussed, along with the approach to model tuning.
In Part II of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part I. Part II provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities ( math formula). In each month, monthly mean math formula for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime math formula during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and math formula implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.
Paulot, Fabien, Songmiao Fan, and Larry W Horowitz, January 2017: Contrasting seasonal responses of sulfate aerosols to declining SO2 emissions in the Eastern US: implications for the efficacy of SO2 emission controls. Geophysical Research Letters, 44(1), DOI:10.1002/2016GL070695. Abstract
Stringent controls have reduced US SO2 emissions by over 60% since the late 1990s. These controls have been more effective at reducing surface [ inline image] in summer (JJA) than in winter (DJF), a seasonal contrast that is not robustly captured by CMIP5 global models. We use the GFDL AM3 chemistry-climate model to show that oxidant limitation during winter causes [ inline image] (DJF) to be sensitive to primary inline image emissions, in-cloud titration of H2O2, and in-cloud oxidation by O3. The observed contrast in the seasonal response of [ inline image] to decreasing SO2 emissions is best explained by the O3 reaction, whose rate coefficient has increased over the past decades as a result of increasing NH3 emissions and decreasing SO2 emissions, both of which lower cloud water acidity. The fraction of SO2 oxidized to inline image is projected to keep increasing in future decades, delaying improvements in wintertime air quality.
Paulot, Fabien, David J Paynter, Paul Ginoux, Vaishali Naik, S Whitburn, M Van Damme, L Clarisse, P-F Coheur, and Larry W Horowitz, August 2017: Gas-aerosol partitioning of ammonia in biomass burning plumes: implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate. Geophysical Research Letters, 44(15), DOI:10.1002/2017GL074215. Abstract
Satellite–derived enhancement ratios of NH3 relative to CO column burden ( math formula) in fires over Alaska, the Amazon, and South Equatorial Africa are 35, 45, and 70% lower than the corresponding ratio of their emissions factors ( math formula) from biomass burning derived from in-situ observations. Simulations performed using the GFDL AM3 global chemistry–climate model show that these regional differences may not entirely stem from an overestimate of NH3 emissions but rather from changes in the gas-aerosol partitioning of NH3 to NH math formula. Differences between math formula and math formula are largest in regions where EFNOx/NH3 is high, consistent with the production of NH4NO3. Biomass burning is estimated to contribute 13–24% of the global burden and direct radiative effect (DRE) of NH4NO3(-15 – -28 mWm−2), despite accounting for less than 6% of the global source of NH3. Production of NH4NO3 is largely concentrated over the Amazon and South Equatorial Africa, where its DRE can reach -1.9Wm−2 during the biomass burning season.
Lee, H-M, and Fabien Paulot, et al., January 2016: Sources of nitrogen deposition in Federal Class I areas in the US. Atmospheric Chemistry and Physics, 16(2), DOI:10.5194/acp-16-525-2016. Abstract
It is desired to control excessive reactive nitrogen (Nr) deposition due to its detrimental impact on ecosystems. Using a 3-dimensional atmospheric chemical transport model, GEOS-Chem, Nr deposition in the contiguous US and eight selected Class I areas (Voyageurs (VY), Smoky Mountain (SM), Shenandoah (SD), Big Bend (BB), Rocky Mountain (RM), Grand Teton (GT), Joshua Tree (JT), and Sequoia (SQ)) is investigated. First, modeled Nr deposition is compared with National Trends Network (NTN) and Clean Air Status and Trends Network (CASTNET) measurements. The seasonality of measured species is generally well represented by the model (R2 > 0.6), except in JT. While modeled Nr is generally within the range of seasonal observations, large overestimates are present in sites such as SM and SD in the spring and summer (up to 0.6 kg N ha−1 month−1), likely owing to model high-biases in surface HNO3. The contribution of non-measured species (mostly dry deposition of NH3) to total modeled Nr deposition ranges from 1 to 55 %. The spatial distribution of the origin of Nr deposited in each Class I area and the contributions of individual emission sectors are estimated using the GEOS-Chem adjoint model. We find the largest role of long-range transport for VY, where 50 % (90 %) of annual Nr deposition originates within 670 (1670) km of the park. In contrast, the Nr emission footprint is most localized for SQ, where 50 % (90 %) of the deposition originates from within 130 (370) km. Emissions from California contribute to the Nr deposition in remote areas in the western US (RM, GT). Mobile NOx and livestock NH3 are found to be the major sources of Nr deposition in all sites except BB, where contributions of NOx from lightning and soils to natural levels of Nr deposition are significant (~ 40 %). The efficiency in terms of Nr deposition per kg emissions of NH3-N, NOx-N, and SO2-S are also estimated. Unique seasonal features are found in JT (opposing efficiency distributions for winter and summer), RM (large fluctuations in the range of effective regions), and SD (upwind NH3 emissions hindering Nr deposition). We also evaluate the contributions of emissions to the total area of Class I regions in critical load exceedance, and to the total magnitude of exceedance. We find that while it is effective to control emissions in the western US to reduce the area of regions in CL exceedance, it can be more effective to control emissions in the eastern US to reduce the magnitude of Nr deposition above the CL. Finally, uncertainty in the nitrogen deposition caused by uncertainty in the NH3 emission inventory is explored by comparing results based on two different NH3 inventories; noticeable differences in the emission inventories and thus sensitivities of up to factor of four found in individual locations.
Li, J, Jingqiu Mao, K-E Min, R A Washenfelder, Steven S Brown, J Kaiser, F N Keutsch, R Volkamer, G M Wolfe, T F Hanisco, I B Pollack, Marta Abalos, M Graus, J B Gilman, B M Lerner, C Warneke, J A de Gouw, Ann M Middlebrook, J Liao, A Welti, B H Henderson, V Faye McNeill, S R Hall, K Ullmann, Leo J Donner, Fabien Paulot, and Larry W Horowitz, August 2016: Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research: Atmospheres, 121(16), DOI:10.1002/2016JD025331. Abstract
We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.
We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005–0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (−40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.
Fu, T-M, Y Zheng, Fabien Paulot, Jingqiu Mao, and R M Yantosca, May 2015: Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nature Climate Change, 5(5), DOI:10.1038/nclimate2567. Abstract
Surface ozone, a major air pollutant toxic to humans and damaging to ecosystems(1,2), is produced by the oxidation of volatile organic compounds in the presence of nitrogen oxides (NOx = NO + NO2) and sunlight. Climate warming may affect future surface ozone levels(3-6) even in the absence of anthropogenic emission changes, but the direction of ozone change due to climate warming remains uncertain over the southeast US and other polluted forested areas(3-10). Here we use observations and simulations to diagnose the sensitivity of August surface ozone to large-scale temperature variations in the southeast US during 1988-2011. We show that the enhanced biogenic emissions and the accelerated photochemical reaction rates associated with warmer temperatures both act to increase surface ozone. However, the sensitivity of surface ozone to large-scale warming is highly variable on interannual and interdecadal timescales owing to variation in regional ozone advection. Our results have important implications for the prediction and management of future ozone air quality.
Hu, W W., Pedro Campuzano-Jost, Brett B Palm, Douglas A Day, A M Ortega, P L Hayes, J E Krechmer, Q Chen, M Kuwata, Y J Liu, S S de Sá, K McKinney, S T Martin, M Hu, S H Budisulistiorini, M Riva, J D Surratt, J M St. Clair, G Isaacman-Van Wertz, L D Yee, A H Goldstein, S Carbone, J Brito, Paulo Artaxo, J A de Gouw, A Koss, A Wisthaler, T Mikoviny, T R Karl, L Kaser, W Jud, A Hansel, K S Docherty, M L Alexander, N H Robinson, H Coe, J D Allan, M R Canagaratna, Fabien Paulot, and J L Jimenez, October 2015: Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 15(20), DOI:10.5194/acp-15-11807-2015. Abstract
Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.
Millet, D B., M Baasandorj, D K Farmer, J A Thornton, K Baumann, P Brophy, S Chaliyakunnel, J A de Gouw, M Graus, L Hu, A Koss, B H Lee, Felipe D Lopez-Hilfiker, J Andrew Neuman, and Fabien Paulot, et al., June 2015: A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 15(11), DOI:10.5194/acp-15-6283-2015. Abstract
Formic acid (HCOOH) is one of the most abundant acids in the atmosphere, with an important influence on precipitation chemistry and acidity. Here we employ a chemical transport model (GEOS-Chem CTM) to interpret recent airborne and ground-based measurements over the US Southeast in terms of the constraints they provide on HCOOH sources and sinks. Summertime boundary layer concentrations average several parts-per-billion, 2–3× larger than can be explained based on known production and loss pathways. This indicates one or more large missing HCOOH sources, and suggests either a key gap in current understanding of hydrocarbon oxidation or a large, unidentified, direct flux of HCOOH. Model-measurement comparisons implicate biogenic sources (e.g., isoprene oxidation) as the predominant HCOOH source. Resolving the unexplained boundary layer concentrations based (i) solely on isoprene oxidation would require a 3× increase in the model HCOOH yield, or (ii) solely on direct HCOOH emissions would require approximately a 25× increase in its biogenic flux. However, neither of these can explain the high HCOOH amounts seen in anthropogenic air masses and in the free troposphere. The overall indication is of a large biogenic source combined with ubiquitous chemical production of HCOOH across a range of precursors. Laboratory work is needed to better quantify the rates and mechanisms of carboxylic acid production from isoprene and other prevalent organics. Stabilized Criegee intermediates (SCIs) provide a large model source of HCOOH, while acetaldehyde tautomerization accounts for ~ 15% of the simulated global burden. Because carboxylic acids also react with SCIs and catalyze the reverse tautomerization reaction, HCOOH buffers against its own production by both of these pathways. Based on recent laboratory results, reaction between CH3O2 and OH could provide a major source of atmospheric HCOOH; however, including this chemistry degrades the model simulation of CH3OOH and NOx : CH3OOH. Developing better constraints on SCI and RO2 + OH chemistry is a high priority for future work. The model neither captures the large diurnal amplitude in HCOOH seen in surface air, nor its inverted vertical gradient at night. This implies a substantial bias in our current representation of deposition as modulated by boundary layer dynamics, and may indicate an HCOOH sink underestimate and thus an even larger missing source. A more robust treatment of surface deposition is a key need for improving simulations of HCOOH and related trace gases, and our understanding of their budgets.
Nguyen, T B., John D Crounse, A P Teng, J M St. Clair, and Fabien Paulot, et al., February 2015: Rapid deposition of oxidized biogenic compounds to a temperate forest. Proceedings of the National Academy of Sciences, 112(5), DOI:10.1073/pnas.1418702112. Abstract
We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m−2⋅s−1). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.
Paulot, Fabien, D J Jacob, M T Johnson, T G Bell, A R Baker, W C Keene, Ivan D Lima, Scott C Doney, and Charles A Stock, August 2015: Global oceanic emission of ammonia: constraints from seawater and atmospheric observations. Global Biogeochemical Cycles, 29(8), DOI:10.1002/2015GB005106. Abstract
Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here, we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values(7–23 TgN a−1), including the widely used GEIA inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.
Zhao, Y H., L Zhang, Y P Pan, Y S Wang, Fabien Paulot, and D K Henze, September 2015: Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. Atmospheric Chemistry and Physics Discussions, 15(8), DOI:10.5194/acpd-15-13657-2015. Abstract
Rapid Asian industrialization has led to increased atmospheric nitrogen deposition downwind threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over the East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a−1 as NH3 and 15.7 Tg N a−1 as NOx. China has the largest sources with 12.8 Tg N a−1 as NH3 and 7.9 Tg N a−1 as NOx; the high NH3 emissions reflect its intensive agricultural activities. We find Asian NH3 emissions are a factor of 3 higher in summer than winter. The model simulation for 2008–2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8–20 kg N ha−1 a−1, decreasing rapidly downwind the Asian continent. Deposition fluxes average 11.9 kg N ha−1 a−1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha−1 a−1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7% over the South China Sea, and become important (greater than 30%) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian Monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92% contribution) and the Korean peninsula (7%), and by sectors from fertilizer use (24%), power plants (22%), and transportation (18%). Deposition to the South China Sea shows source contribution from Mainland China (66%), Taiwan (20%), and the rest 14% from the Southeast Asian countries and oceanic NH3 emissions. The adjoint analyses also indicate that reducing Asian NH3 emissions would increase NOy dry deposition to the Yellow Sea (28% offset annually), limiting the effectiveness of NH3 emission controls.
Zhu, L, D K Henze, Jesse O Bash, G-R Jeong, K E Cady‐Pereira, M Shephard, M Luo, Fabien Paulot, and S Capps, November 2015: Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmospheric Chemistry and Physics, 15(22), DOI:10.5194/acp-15-12823-2015. Abstract
Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3 livestock emissions and evaluate the recently developed MASAGE_NH3 bottom-up inventory. While updated diurnal variability improves comparison of modeled-to-hourly in situ measurements in the southeastern USA, NH3 concentrations decrease throughout the globe, up to 17 ppb in India and southeastern China, with corresponding decreases in aerosol nitrate by up to 7 μg m−3. The ammonium (NH4+) soil pool in the bidirectional exchange model largely extends the NH3 lifetime in the atmosphere. Including bidirectional exchange generally increases NH3 gross emissions (7.1 %) and surface concentrations (up to 3.9 ppb) throughout the globe in July, except in India and southeastern China. In April and October, it decreases NH3 gross emissions in the Northern Hemisphere (e.g., 43.6 % in April in China) and increases NH3 gross emissions in the Southern Hemisphere. Bidirectional exchange does not largely impact NH4+ wet deposition overall. While bidirectional exchange is fundamentally a better representation of NH3 emissions from fertilizers, emissions from primary sources are still underestimated and thus significant model biases remain when compared to in situ measurements in the USA. The adjoint of bidirectional exchange has also been developed for the GEOS-Chem model and is used to investigate the sensitivity of NH3 concentrations with respect to soil pH and fertilizer application rate. This study thus lays the groundwork for future inverse modeling studies to more directly constrain these physical processes rather than tuning bulk unidirectional NH3 emissions.
Mao, Jingqiu, Fabien Paulot, D J Jacob, R C Cohen, John D Crounse, P O Wennberg, Christoph A Keller, R Hudman, M P Barkley, and Larry W Horowitz, October 2013: Ozone and organic nitrates over the eastern United States: sensitivity to isoprene chemistry. Journal of Geophysical Research: Atmospheres, 118(19), DOI:10.1002/jgrd.50817. Abstract
We implement a new isoprene oxidation mechanism in a global 3-D chemical transport model (GEOS-Chem). Model results are evaluated with observations for ozone, isoprene oxidation products, and related species from the ICARTT aircraft campaign over the eastern United States in summer 2004. The model achieves an unbiased simulation of ozone in the boundary layer and the free troposphere, reflecting canceling effects from recent model updates for isoprene chemistry, bromine chemistry, and HO2 loss to aerosols. Simulation of the ozone-CO correlation is improved relative to previous versions of the model and this is attributed to a lower and reversible yield of isoprene nitrates, increasing the ozone production efficiency (OPE) per unit of nitrogen oxides (NOx ≡ NO + NO2). The model successfully reproduces the observed concentrations of organic nitrates (∑ANs) and their correlations with HCHO and ozone. ∑ANs in the model is principally composed of secondary isoprene nitrates, including a major contribution from nighttime isoprene oxidation. The correlations of ∑ANs with HCHO and ozone then provide sensitive tests of isoprene chemistry and argue in particular against a fast isomerization channel for isoprene peroxy radicals. ∑ANs can provide an important reservoir for exporting NOx from the US boundary layer. We find that the dependence of surface ozone on isoprene emission is positive throughout the US, even if NOx emissions are reduced by a factor of 4. Previous models showed negative dependences that we attribute to erroneous titration of OH by isoprene.
Marais, Eloise A., D J Jacob, T P Kurosu, K Chance, J G Murphy, C Reeves, G Mills, S Casadio, D B Millet, M P Barkley, Fabien Paulot, and Jingqiu Mao, July 2012: Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmospheric Chemistry and Physics, 12(14), DOI:10.5194/acp-12-6219-2012. Abstract
We use 2005–2009 satellite observations of formaldehyde (HCHO) columns from the OMI instrument to infer biogenic isoprene emissions at monthly 1 × 1° resolution over the African continent. Our work includes new approaches to remove biomass burning influences using OMI absorbing aerosol optical depth data (to account for transport of fire plumes) and anthropogenic influences using AATSR satellite data for persistent small-flame fires (gas flaring). The resulting biogenic HCHO columns (ΩHCHO) from OMI follow closely the distribution of vegetation patterns in Africa. We infer isoprene emission (EISOP) from the local sensitivity S = ΔΩHCHO / ΔEISOP derived with the GEOS-Chem chemical transport model using two alternate isoprene oxidation mechanisms, and verify the validity of this approach using AMMA aircraft observations over West Africa and a longitudinal transect across central Africa. Displacement error (smearing) is diagnosed by anomalously high values of S and the corresponding data are removed. We find significant sensitivity of S to NOx under low-NOx conditions that we fit to a linear function of tropospheric column NO2. We estimate a 40% error in our inferred isoprene emissions under high-NOx conditions and 40–90% under low-NOx conditions. Our results suggest that isoprene emission from the central African rainforest is much lower than estimated by the state-of-the-science MEGAN inventory.