Santos, Luan F., Joseph Mouallem, and Pedro S Peixoto, February 2025: Analysis of finite-volume transport schemes on cubed-sphere grids and an accurate scheme for divergent winds. Journal of Computational Physics, 522, 113618, DOI:10.1016/j.jcp.2024.113618. Abstract
The cubed-sphere finite-volume dynamical core (FV3), developed by GFDL-NOAA-USA, serves as the dynamical core for many models worldwide. In 2019, it was officially designated as the dynamical core for the new Global Forecast System of the National Weather Service in the USA, replacing the spectral model. The finite-volume approach employed by FV3 to solve horizontal dynamics involves the application of transport finite-volume fluxes for different variables. Hence, the transport scheme plays a key role in the model. Therefore, this work proposes to revisit the details of the transport scheme of FV3 with the aim of adding enhancements. We proposed modifications to the FV3 transport scheme, which notably enhanced accuracy, particularly in the presence of divergent winds, as evidenced by numerical experiments. In contrast to the FV3 scheme's first-order accuracy in the presence of divergent winds, the proposed scheme achieves second-order accuracy. For divergence-free winds, both schemes are second-order, with our scheme being slightly more accurate. Additionally, the proposed scheme exhibits slight computational overhead but is easily implemented in the current code. In summary, the proposed scheme offers significant improvements in accuracy, particularly in the presence of divergent winds, which are present in various atmospheric phenomena, while maintaining computational efficiency.
Chen, Jan-Huey, Adam J Clark, Guoqing Ge, Lucas Harris, Kimberly Hoogewind, Anders Jensen, Hosmay Lopez, Joseph Mouallem, Breanna L Zavadoff, Xuejin Zhang, and Linjiong Zhou, January 2024: 2022-2023 Global-Nest Initiative Activity Summary: Recent Results and Future Plan, Princeton, NJ: NOAA Technical Memorandum OAR GFDL, 2023-001, DOI:10.25923/yx20-3k04 14pp. Abstract
The Global-Nest Initiative takes new technologies developed at Geophysical Fluid Dynamics Laboratory (GFDL) and partners to create convective-scale digital twins of the earth system to better simulate and predict extreme weather events, their impacts, and their role within the broader earth system, and to create actionable information at all time scales. This annual report describes the activities and results of the NOAA Global-Nest Initiative during Fiscal Year 2022-2023.
Finger-like km-scale features have been observed along the inner-edge of the eyewall of intense hurricanes. But due to the limited availability of observations, many important aspects of these features remain unknown. In this study, we aim to offer insights on the nature of these phenomena based on a four-day-duration O(100 m) grid spacing simulation that covers the inner-core region of an idealized hurricane. The simulation successfully captured the finger-like features, which closely resemble observed ones. We propose that these features are formed due to the shear instability associated with vertical distribution of the tangential wind in the inner-core region. This proposed mechanism offers insights on several key characteristics of the features of interest, including their emergence time, frequency, radial location and vertical extent. Our study also demonstrates the feasibility of using multi-level nesting for O(100 m) grid spacing hurricane simulations and predictions, aligning with the goals for next generation hurricane models.
We introduce a 6.5-km version of the Geophysical Fluid Dynamics Laboratory (GFDL)'s System for High-resolution prediction on Earth-to-Local Domains (SHiELD). This global model is designed to bridge the gap between global medium-range weather prediction and global storm-resolving simulation while remaining practical for real-time forecast. The 6.5-km SHiELD represents a significant advancement over GFDL's flagship global forecast system, the 13-km SHiELD. This global model features a holistically-developed scale-aware suite of physical parameterizations, stepping into the formidable convective “gray zone” of resolutions below 10 km. Comparative analyses with the 13-km SHiELD, conducted over a 3-year hindcast period, highlight noteworthy improvements across global-scale, regional-scale, tropical cyclone (TC), and continental convection predictions. In particular, the 6.5-km SHiELD excels in predicting considerably finer-scale convective systems associated with large-scale frontal systems and extratropical cyclones. The predictions of global temperature, wind, cloud, and precipitation are significantly improved in this global model. Regionally, over the contiguous United States and the Maritime Continent, substantial reductions in prediction biases of precipitation, cloud cover, and wind fields are also found. In the mesoscale realm, the model demonstrates prominent improvements in global TC intensity and continental convective precipitation prediction: biases are relieved, and skill is higher. These findings affirm the superiority of the 6.5-km SHiELD compared to the current 13-km SHiELD, which will advance weather prediction by successfully addressing both synoptic weather systems and specific storm-scale phenomena in the same global model.
The gnomonic cubed-sphere grid has excellent accuracy and uniformity, but the “kink” in the coordinates at the cube edges in the halo region can leave an imprint of the cube in the solution, and requires special edge handling. To reduce grid imprinting, we implement the novel “Duo-Grid” within the Geophysical Fluid Dynamics Laboratory's (GFDL) Finite-Volume Cubed-Sphere Dynamical Core (FV3). The Duo-Grid remaps a cube face's data from neighboring face from kinked to natural locations along great circle lines using 1D piecewise linear interpolation. A 2D interpolation algorithm is used to fill correct data at the eight corners of the cubed-sphere needed for FV3's 2D advection scheme. The Duo-Grid was tested in idealized tests using the 2D shallow water solver and the 3D hydrostatic and non-hydrostatic solvers. We found that error norms are greatly reduced and grid imprinting is practically eliminated when employing the Duo-Grid. These results indicate that FV3's accuracy and robustness have improved.
Two-way multiple same-level and telescoping grid nesting capabilities are implemented in the Geophysical Fluid Dynamics Laboratory (GFDL)'s Finite-Volume Cubed-Sphere Dynamical Core (FV3). Simulations are performed within GFDL's System for High-resolution modeling for Earth-to-Local Domains (SHiELD) using global and regional multiple nest configurations. Results show that multiple same-level and multi-level telescoping nests were able to capture various weather events in greater details by resolving smaller-scale flow structures. Two-way updates do not introduce numerical errors in their corresponding parent grids where the nests are located. The cases of Hurricane Laura's landfall and an atmospheric river in California were found to be more intense with increased levels of telescoping nesting. All nested grids run concurrently, and adding additional nests with computer cores to a setup does not degrade the computational performance nor increase the simulation run time if the cores are optimally distributed among the grids.