Bibliography - Linjiong Zhou
- Chen, Jan-Huey, Shian-Jiann Lin, L Magnusson, Morris A Bender, Xi Chen, Linjiong Zhou, Baoqiang Xiang, Shannon L Rees, Matthew J Morin, and Lucas Harris, April 2019: Advancements in Hurricane Prediction with NOAA's Next Generation Forecast System. Geophysical Research Letters, 46(8), DOI:10.1029/2019GL082410.
Abstract We use the fvGFS model developed at the Geophysical Fluid Dynamics Laboratory (GFDL) to demonstrate the potential of the upcoming United States Next Generation Global Prediction System for hurricane prediction. The fvGFS retrospective forecasts initialized with the European Centre for Medium‐Range Weather Forecasts (ECMWF) data showed much‐improved track forecasts for the 2017 Atlantic hurricane season compared to the best performing ECMWF operational model. The fvGFS greatly improved the ECMWF's poor track forecast for Hurricane Maria (2017). For Hurricane Irma (2017), a well‐predicted case by the ECMWF model, the fvGFS produced even lower 5‐day track forecast errors. The fvGFS also showed better intensity prediction than both the United States and the ECMWF operational models, indicating the robustness of its numerical algorithms.
- Chen, Jan-Huey, Shian-Jiann Lin, Linjiong Zhou, Xi Chen, Shannon L Rees, Morris A Bender, and Matthew J Morin, September 2019: Evaluation of Tropical Cyclone Forecasts in the Next Generation Global Prediction System. Monthly Weather Review, 147(9), DOI:10.1175/MWR-D-18-0227.1.
Abstract A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core (FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction's Global Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core, FV3, has been selected for National Oceanic and Atmospheric Administration’s Next Generation Global Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, which brings a great opportunity for the unification of weather and climate prediction systems.
The performance of tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operational GFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction, the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern Pacific Ocean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysics scheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besides track and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFS and operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed to investigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hit ratios, lower false alarm ratios and longer genesis lead times than those of the GFS model in most of the TC basins.
- Harris, Lucas, Shannon L Rees, Matthew J Morin, Linjiong Zhou, and William F Stern, June 2019: Explicit prediction of continental convection in a skillful variable‐resolution global model. Journal of Advances in Modeling Earth Systems, 11(6), DOI:10.1029/2018MS001542.
Abstract We present a new global‐to‐regional model, cfvGFS, able to explicitly (without parameterization) represent convection over part of the earth. This model couples the Geophysical Fluid Dynamics Laboratory Finite‐Volume Cubed‐Sphere Dynamical Core (FV3) to the Global Forecast System (GFS) physics and initial conditions, augmented with a six‐category microphysics and a modified planetary boundary layer scheme. We examine the characteristics of cfvGFS on a 3‐km continental United States domain nested within a 13‐km global model. The nested cfvGFS still has good hemispheric skill comparable to or better than the operational GFS, while supercell thunderstorms, squall lines, and derechos are explicitly‐represented over the refined region. In particular, cfvGFS has excellent representations of fine‐scale updraft helicity fields, an important proxy for severe weather forecasting. Precipitation biases are found to be smaller than in uniform‐resolution global models and competitive with operational regional models; the 3‐km domain also improves upon the global models in 2‐m temperature and humidity skill. We discuss further development of cfvGFS and the prospects for a unified global‐to‐regional prediction system.
- He, Bian, Q Bao, X Wang, and Linjiong Zhou, et al., August 2019: CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. Advances in Atmospheric Sciences, 36(8), DOI:10.1007/s00376-019-9027-8.
Abstract The outputs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic, Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project (CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total, there are three ensemble experiments over the period 1979–2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden-Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP.
- Magnusson, L, Jan-Huey Chen, Shian-Jiann Lin, Linjiong Zhou, and Xi Chen, July 2019: Dependence on initial conditions vs. model formulations for medium‐range forecast error variations. Quarterly Journal of the Royal Meteorological Society, 145(722), DOI:10.1002/qj.3545.
Abstract Understanding the root causes of forecast errors and occasional very poor forecasts is essential but difficult. In this paper we investigate the relative importance of initial conditions and model formulation for medium‐range errors in 500‐hPa geopotential height. The question is addressed by comparing forecasts produced with ECMWF‐IFS and NCEP‐GFS forecasting systems, and with the GFDL‐fvGFS model initialised with ECMWF and NCEP initial conditions. This gives two pairs of configurations that use the same initial conditions but different models, and one pair with the same model but different initial conditions. The first conclusion is that the initial conditions play the major role for differences between the configurations in terms of the average root‐mean‐square error for both northern and southern hemispheres as well as Europe and the contiguous U.S (CONUS), while the model dominates the systematic errors. A similar conclusion is also found by verifying precipitation over low latitudes and the CONUS. The day‐to‐day variations of 500‐hPa geopotential height scores are exemplified by one case of a forecast bust over Europe, where the error is found to be dominated by initial errors. The results are generalised by calculating correlations between errors integrated over Europe, CONUS and a region in southeastern Pacific respectively from the different configurations. For Europe and southeast Pacific, the correlations in the medium‐range are highest between the pairs that use the same initial conditions, while over CONUS it is for the pair with the same model. This suggests different mechanisms behind the day‐to‐day variability of the score for these regions. Over CONUS the link is made to the propagation of troughs over the Rockies, and the result suggests that the large differences in parameterisations of orographic drag between the models plays a role.
- Stevens, B, M Satoh, L Auger, J Biercamp, C S Bretherton, Xi Chen, P Düben, F Judt, M Khairoutdinov, D Klocke, C Kodama, L Kornblueh, Shian-Jiann Lin, P Neumann, W M Putman, N Röber, R Shibuya, B Vanniere, P L Vidale, N Wedi, and Linjiong Zhou, September 2019: DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and Planetary Science, 6, 61, DOI:10.1186/s40645-019-0304-z.
Abstract A review of the experimental protocol and motivation for DYAMOND, the first intercomparison project of global storm-resolving models, is presented. Nine models submitted simulation output for a 40-day (1 August–10 September 2016) intercomparison period. Eight of these employed a tiling of the sphere that was uniformly less than 5 km. By resolving the transient dynamics of convective storms in the tropics, global storm-resolving models remove the need to parameterize tropical deep convection, providing a fundamentally more sound representation of the climate system and a more natural link to commensurately high-resolution data from satellite-borne sensors. The models and some basic characteristics of their output are described in more detail, as is the availability and planned use of this output for future scientific study. Tropically and zonally averaged energy budgets, precipitable water distributions, and precipitation from the model ensemble are evaluated, as is their representation of tropical cyclones and the predictability of column water vapor, the latter being important for tropical weather.
- Wang, Lei, Q Bao, W-C Wang, Y Liu, Guoxiong Wu, and Linjiong Zhou, et al., July 2019: LASG Global AGCM with a Two-moment Cloud Microphysics Scheme: Energy Balance and Cloud Radiative Forcing Characteristics. Advances in Atmospheric Sciences, 36(7), DOI:10.1007/s00376-019-8196-9.
Abstract Cloud dominates influence factors of atmospheric radiation, while aerosol-cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment (mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/LASG global Finite-volume Atmospheric Model (FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing (CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere (TOA) and at the Earth’s surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2 (1%) and 3 W m-2 (3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region (AMR). The results indicate that FAMIL1.1 well reproduces the summer-winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed.
- Zhou, Linjiong, Shian-Jiann Lin, Jan-Huey Chen, Lucas Harris, Xi Chen, and Shannon L Rees, July 2019: Toward Convective-Scale Prediction within the Next Generation Global Prediction System. Bulletin of the American Meteorological Society, 100(7), DOI:10.1175/BAMS-D-17-0246.1.
Abstract The variable-resolution version of a Finite-Volume Cubed-Sphere Dynamical Core (FV3)-based global model improves the prediction of convective-scale features while maintaining skillful global forecasts.
The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a new variable-resolution global model with the ability to represent convective-scale features that serves as a prototype of the Next Generation Global Prediction System (NGGPS). The goal of this prediction system is to maintain the skill in large-scale features while simultaneously improving the prediction skill of convectively-driven mesoscale phenomena. This paper demonstrates the new capability of this model in convective-scale prediction relative to the current operational Global Forecast System (GFS). This model uses the stretched-grid functionality of the Finite-Volume Cubed-Sphere Dynamical Core (FV3) to refine the global 13-km uniform-resolution model down to 4-km convection-permitting resolution over the Contiguous United States (CONUS), and implements the GFDL single-moment six-category cloud microphysics to improve the representation of moist processes.
Statistics gathered from two years of simulations by the GFS and select configurations of the FV3-based model are carefully examined. The variable-resolution FV3-based model is shown to possess global forecast skill comparable with that of the operational GFS while quantitatively improving skill and better representing the diurnal cycle within the high-resolution area compared to the uniform mesh simulations. Forecasts of the occurrence of extreme precipitation rates over the Southern Great Plains are also shown to improve with the variable-resolution model. Case studies are provided of a squall line and a hurricane to demonstrate the effectiveness of the variable-resolution model to simulate convective-scale phenomena.
- Liu, P, Y Zhu, Q Zhang, J Gottschalck, M Zhang, C Melhauser, Wei Li, Hong Guan, Xiaqiong Zhou, Dingchen Hou, M Peña, Guoxiong Wu, Y Liu, and Linjiong Zhou, et al., July 2018: Climatology of tracked persistent maxima of 500-hPa geopotential height. Climate Dynamics, 51(1-2), DOI:10.1007/s00382-017-3950-0.
Abstract Persistent open ridges and blocking highs (maxima) of 500-hPa geopotential height (Z500; PMZ) adjacent in space and time are identified and tracked as one event with a Lagrangian objective approach to derive their climatological statistics with some dynamical reasoning. A PMZ starts with a core that contains a local eddy maximum of Z500 and its neighboring grid points whose eddy values decrease radially to about 20 geopotential meters (GPMs) smaller than the maximum. It connects two consecutive cores that share at least one grid point and are within 10° of longitude of each other using an intensity-weighted location. The PMZ ends at the core without a successor. On each day, the PMZ impacts an area of grid points contiguous to the core and with eddy values decreasing radially to 100 GPMs. The PMZs identified and tracked consist of persistent ridges, omega blockings and blocked anticyclones either connected or as individual events. For example, the PMZ during 2–13 August 2003 corresponds to persistent open ridges that caused the extreme heatwave in Western Europe. Climatological statistics based on the PMZs longer than 3 days generally agree with those of blockings. In the Northern Hemisphere, more PMZs occur in DJF season than in JJA and their duration both exhibit a log-linear distribution. Because more omega-shape blocking highs and open ridges are counted, the PMZs occur more frequently over Northeast Pacific than over Atlantic-Europe during cool seasons. Similar results are obtained using the 200-hPa geopotential height (in place of Z500), indicating the quasi-barotropic nature of the PMZ.
Direct link to page: http://www.gfdl.noaa.gov/bibliography/results.php?author=6977