Over the past century, human activities have resulted in substantial global changes that threaten the stability and functionality of coastal habitats. One of these impacts was through nutrient pollution of river runoffs, which have triggered harmful algal blooms and caused low-oxygen conditions in many coastal regions. However, it is challenging for models to simulate coastal impacts of increasing river nutrient loads, especially on a global scale and over a long period of time. Here we take advantage of some recent modeling advances to provide a global perspective on coastal ecosystem responses to increasing river nitrogen loads over the half-century between 1961 and 2010. Overall, we show that the global coastal ocean accumulated more nitrogen over time as river nitrogen loads increased. This caused the primary production of the global coastal system (i.e., the conversion of inorganic to organic materials through photosynthesis) to increase as well. However, we found that the sensitivity of each coastal ecosystem to comparable changes in nitrogen loads varied considerably. This variability was to a large extent related to two factors: the rate of exchange between coastal waters and the adjacent ocean waters, and whether nutrients are limited for phytoplankton to conduct photosynthesis in that system.
Exchanges between coastal and oceanic waters shape both coastal ecosystem processes and signatures that they impart on global biogeochemical cycles. The time‐scales of these exchanges, however, are poorly represented in current‐generation, coarse‐grid climate models. Here we provide a novel global perspective on coastal residence time (CRT) and its spatio‐temporal variability using a new age tracer implemented in global ocean models. Simulated CRTs range widely from several days in narrow boundary currents to multiple years on broader shelves and in semi‐enclosed seas, in agreement with available observations. Overall, CRT is better characterized in high‐resolution models (1/8° and 1/4°) than the coarser (1° and 1/2°) versions. This is in large part because coastal and open ocean grid cells are more directly connected in coarse models, prone to erroneous coastal flushing and an underestimated CRT. Additionally, we find that geometric enclosure of a coastal system places an important constraint on CRT.