#### Answer

$2$

#### Work Step by Step

We know that for a polynomial function,
$\lim\limits_{x \to a} k(x)=k(a)$, where $a$ is a constant.
Thus, we have:
$\lim\limits_{x \to -1} (8x^5-7x^3+8x^2+x-4)=8(-1)^5-7(-1)^3+8(-1)^2+(-1)-4 \\=-8+7+8-1-4 \\=-8+7+3 \\=2$