Projections of future tropical cyclone frequency are uncertain, ranging from a slight increase to a considerable decrease according to climate models. Estimation of how much the Earth’s surface temperature warms in response to greenhouse gas increase, quantified by effective climate sensitivity, is also uncertain. These two uncertainties have historically been studied independently as they concern different scales: One quantifies the extreme weather and the other the mean climate. Here, we show that these two uncertainties are not independent and are both influenced by the response of tropical clouds to warming. Across climate models, we show an anticorrelation between shortwave cloud radiative feedback and changes in the frequency of seed vortices, a prevalent type of tropical cyclone precursors. We further show an anticorrelation between effective climate sensitivity and tropical cyclone frequency changes, suggesting that global tropical cyclone frequency tends to decrease more substantially in models with larger temperature increase.
This study investigates the relative roles of sea surface temperature–forced climate changes and weather variability in driving the observed eastward shift of Atlantic hurricane tracks over the period from 1970 to 2021. A 10-member initial condition ensemble with a ∼25-km horizontal resolution tropical cyclone permitting atmospheric model (GFDL AM2.5-C360) with identical sea surface temperature and radiative forcing time series was analyzed in conjunction with historical hurricane track observations. While a frequency increase was recovered by all the simulations, the observed multidecadal eastward shift in tracks was not robust across the ensemble members, indicating that it included a substantial contribution from weather-scale variability. A statistical model was developed to simulate expected storm tracks based on genesis location and steering flow, and it was used to conduct experiments testing the roles of changing genesis location and changing steering flow in producing the multidecadal weather-driven shifts in storm tracks. These experiments indicated that shifts in genesis location were a substantially larger driver of these multidecadal track changes than changes in steering flow. The substantial impact of weather on tracks indicates that there may be limited predictability for multidecadal track changes like those observed, although basinwide frequency has greater potential for prediction. Additionally, understanding changes in genesis location appears essential to understanding changes in track location.
The response of tropical cyclone (TC) frequency to sea surface warming is uncertain in climate models. We hypothesize that one source of uncertainty is the anomalies of large-scale atmospheric radiation in response to climate change, and whose influence on TC frequency is investigated. Given two atmospheric models with opposite TC frequency responses to uniform sea surface warming, we interchange their atmospheric radiation anomalies in experiments with prescribed radiative heating rates. The largest model discrepancy occurs in the western North Pacific, where the TC frequency tends to increase with anomalous large-scale ascent caused by prescribed positive radiation anomalies, while the TC frequency tends to decrease with anomalous large-scale descent caused by prescribed negative radiation anomalies. The model spread in TC frequency response is approximated by the model spread in the frequency response of pre-TC vortices (seeds), which is explained by changes in the large-scale circulation using a downscaling formula known as the seed propensity index. We further generalize the index to predict the influence of large-scale radiation anomalies on TC seed frequency. The results show that model spread in TC and seed frequency response can be reduced when constraining the large-scale radiation anomalies.
The future projection of tropical cyclone frequency is highly uncertain. Recent multi-model studies showed that the model spread in tropical cyclones is correlated with the model spread in seeds, which are defined as convective weak vortices. However, it was unclear how the model spread is related to the large-scale circulation. Here we apply a downscaling theory recently developed using aquaplanet experiments to explain the seed frequency across four global atmospheric models having different parameterizations of convection and resolutions. The seed frequency has a larger model spread in response to uniform warming than to CO2 doubling or El Niño/La Niña-like sea surface temperature perturbations. Across all climate perturbations, the seed frequency is captured by the downscaling theory, expressed as a seed propensity index. The index highlights the connection between the tropical cyclone seeds and the climatological mean ascent pattern.
Although classical theories of midlatitude momentum fluxes focus on the wave–mean flow interaction, wave–wave interactions may be important for generating long waves. It is shown in this study that this nonlinear generation has implications for eddy momentum fluxes in some regimes. Using a two-layer quasigeostrophic model of a baroclinic jet on a β plane, statistically steady states are explored in which the vertically integrated eddy momentum flux is divergent at the center of the jet, rather than convergent as in Earthlike climates. One moves toward this less familiar climate from more Earthlike settings by reducing either β, frictional drag, or the width of the baroclinic zone, or by increasing the upper bound of resolvable wavelengths by lengthening the zonal channel. Even in Earthlike settings, long waves diverge momentum from the jet, but they are too weak to compete with short unstable waves that converge momentum. We argue that long waves are generated by breaking of short unstable waves near their critical latitudes, where long waves converge momentum while diverging momentum at the center of the jet. Quasi-linear models with no wave–wave interaction can qualitatively capture the Earthlike regime but not the regime with momentum flux divergence at the center of the jet, because the nonlinear wave breaking and long-wave generation processes are missing. Therefore, a more comprehensive theory of atmospheric eddy momentum fluxes should take into account the nonlinear dynamics of long waves.
Knutson, Thomas R., Maya V Chung, Gabriel A Vecchi, Jingru Sun, Tsung-Lin Hsieh, and Adam J Smith, March 2021: ScienceBrief Review: Climate change is probably increasing the intensity of tropical cyclones [Le Quéré, Corrine, Peter Liss, and Piers Forster (ed.)] In Critical Issues in Climate Change Science, DOI:10.5281/zenodo.4570334. Abstract
Warming of the surface ocean from anthropogenic (human-induced) climate change is likely fuelling more powerful TCs. The destructive power of individual TCs through flooding is amplified by rising sea level, which very likely has a substantial contribution at the global scale from anthropogenic climate change. In addition, TC precipitation rates are projected to increase due to enhanced atmospheric moisture associated with anthropogenic global warming. The proportion of severe TCs (category 3 & 5) has increased, possibly due to anthropogenic climate change. This proportion of very intense TCs (category 4 & 5) is projected to increase, yet most climate model studies project the total number of TCs each year to decrease or remain approximately the same. Additional changes such as increasing rates of rapid intensification, the poleward migration of the latitude of maximum intensity, and a slowing of the forward motion of TCs have been observed in places, and these may be climate change signals emerging from natural variability. While there are challenges in attributing these past observed changes to anthropogenic forcing, models project that with global warming in coming decades some regions will experience increases in rapid intensification, a poleward migration of the latitude of maximum intensity or a slowing of the forward motion of TCs.
Simulations of baroclinic cyclones often cannot resolve moist convection but resort to convective parametrization. An exception is the hypohydrostatic rescaling, which in principle can be used to better represent convection with no increase in computational cost. The rescaling is studied in the context of a quasi-steady, convectively active, baroclinic cyclone. This is a novel framework with advantages due to the unambiguous time-mean structure. The rescaling is evaluated against high-resolution solutions up to a 5-km grid spacing. A theoretical scaling combining convective-scale dynamics and synoptic-scale energy balance is derived and verified by the simulations. It predicts the insensitivity of the large-scale flow to resolution and moderate rescaling, and a weak bias in the cyclone intensity under very large rescaling. The theory yields a threshold for the rescaling factor that avoids large-scale biases. Below the threshold, the rescaling can be used to control resolution errors at the convective scale, such as the distribution of extreme precipitation rates.
A diagnostic framework is developed to explain the response of tropical cyclones (TCs) to climate in high-resolution global atmospheric models having different complexity of boundary conditions. The framework uses vortex dynamics to identify the large-scale control on the evolution of TC precursors—first non-rotating convective clusters and then weakly rotating seeds. In experiments with perturbed sea surface temperature (SST) and CO2 concentration from the historical values, the response of TCs follows the response of seeds. The distribution of seeds is explained by the distribution of the non-rotating convective clusters multiplied by a probability that they transition to seeds. The distribution of convective clusters is constrained by the large-scale vertical velocity and is verified in aquaplanet experiments with shifting Inter tropical Convergence Zones. The probability of transition to seeds is constrained by the large-scale vorticity via an analytical function, representing the relative importance between vortex stretching and vorticity advection, and is verified in aquaplanet experiments with uniform SST. The consistency between seed and TC responses breaks down substantially when the realistic SST is perturbed such that the spatial gradient is significantly enhanced or reduced. In such cases, the difference between the responses is explained by a change in the ventilation index, which influences the fraction of seeds that develop into TCs. The proposed TC-climate relationship serves as a framework to explain the diversity of TC projection across models and forcing scenarios.