Goosse, Hugues, Quentin Dalaiden, Marie G P Cavitte, and Liping Zhang, January 2021: Can we reconstruct the formation of large open-ocean polynyas in the Southern Ocean using ice core records?Climate of the Past, 17(1), DOI:10.5194/cp-17-111-2021111-131. Abstract
Large open-ocean polynyas, defined as ice-free areas within the sea ice pack, have only rarely been observed in the Southern Ocean over the past decades. In addition to smaller recent events, an impressive sequence occurred in the Weddell Sea in 1974, 1975 and 1976 with openings of more than 300 000 km2 that lasted the full winter. These big events have a huge impact on the sea ice cover, deep-water formation, and, more generally, on the Southern Ocean and the Antarctic climate. However, we have no estimate of the frequency of the occurrence of such large open-ocean polynyas before the 1970s. Our goal here is to test if polynya activity could be reconstructed using continental records and, specifically, observations derived from ice cores. The fingerprint of big open-ocean polynyas is first described in reconstructions based on data from weather stations, in ice cores for the 1970s and in climate models. It shows a signal characterized by a surface air warming and increased precipitation in coastal regions adjacent to the eastern part of the Weddell Sea, where several high-resolution ice cores have been collected. The signal of the isotopic composition of precipitation is more ambiguous; thus, we base our reconstructions on surface mass balance records alone. A first reconstruction is obtained by performing a simple average of standardized records. Given the similarity between the observed signal and the one simulated in models, we also use data assimilation to reconstruct past polynya activity. The impact of open-ocean polynyas on the continent is not large enough, compared with the changes due to factors such as atmospheric variability, to detect the polynya signal without ambiguity, and additional observations would be required to clearly discriminate the years with and without open-ocean polynya. Thus, it is reasonable to consider that, in these preliminary reconstructions, some high snow accumulation events may be wrongly interpreted as the consequence of polynya formation and some years with polynya formation may be missed. Nevertheless, our reconstructions suggest that big open-ocean polynyas, such as those observed in the 1970s, are rare events, occurring at most a few times per century. Century-scale changes in polynya activity are also likely, but our reconstructions are unable to precisely assess this aspect at this stage.
We document the development and simulation characteristics of the next generation modeling system for seasonal to decadal prediction and projection at the Geophysical Fluid Dynamics Laboratory (GFDL). SPEAR (Seamless System for Prediction and EArth System Research) is built from component models recently developed at GFDL ‐ the AM4 atmosphere model, MOM6 ocean code, LM4 land model and SIS2 sea ice model. The SPEAR models are specifically designed with attributes needed for a prediction model for seasonal to decadal time scales, including the ability to run large ensembles of simulations with available computational resources. For computational speed SPEAR uses a coarse ocean resolution of approximately 1.0o (with tropical refinement). SPEAR can use differing atmospheric horizontal resolutions ranging from 1o to 0.25o. The higher atmospheric resolution facilitates improved simulation of regional climate and extremes. SPEAR is built from the same components as the GFDL CM4 and ESM 4 models, but with design choices geared toward seasonal to multidecadal physical climate prediction and projection. We document simulation characteristics for the time‐mean climate, aspects of internal variability, and the response to both idealized and realistic radiative forcing change. We describe in greater detail one focus of the model development process that was motivated by the importance of the Southern Ocean to the global climate system. We present sensitivity tests that document the influence of the Antarctic surface heat budget on Southern Ocean ventilation and deep global ocean circulation. These findings were also useful in the development processes for the GFDL CM4 and ESM 4 models.
Smith, D M., A A Scaife, R Eade, P Athanasiadis, A Bellucci, I Bethke, R Bilbao, L F Borchert, L-P Caron, F Counillon, Gokhan Danabasoglu, Thomas L Delworth, F Doblas-Reyes, N Dunstone, V Estella-Perez, S Flavoni, L Hermanson, N Keenlyside, V Kharin, M Kimoto, W Merryfield, J Mignot, T Mochizuki, K Modali, P-A Moneri, W A Muller, D Nicolí, P Ortega, K Pankatz, H Pohlmann, J Robson, P Ruggieri, R Sospedra-Alfonso, D Swingedouw, Y Wang, S Wild, Stephen G Yeager, Xiaosong Yang, and Liping Zhang, July 2020: North Atlantic climate far more predictable than models imply. Nature, 583, DOI:10.1038/s41586-020-2525-0796-800. Abstract
Quantifying signals and uncertainties in climate models is essential for the detection, attribution, prediction and projection of climate change. Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain. This leads to low confidence in regional projections, especially for precipitation, over the coming decades. The chaotic nature of the climate system may also mean that signal uncertainties are largely irreducible. However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate model predictions of the past six decades and show that decadal variations in North Atlantic winter climate are highly predictable, despite a lack of agreement between individual model simulations and the poor predictive ability of raw model outputs. Crucially, current models underestimate the predictable signal (the predictable fraction of the total variability) of the North Atlantic Oscillation (the leading mode of variability in North Atlantic atmospheric circulation) by an order of magnitude. Consequently, compared to perfect models, 100 times as many ensemble members are needed in current models to extract this signal, and its effects on the climate are underestimated relative to other factors. To address these limitations, we implement a two-stage post-processing technique. We first adjust the variance of the ensemble-mean North Atlantic Oscillation forecast to match the observed variance of the predictable signal. We then select and use only the ensemble members with a North Atlantic Oscillation sufficiently close to the variance-adjusted ensemble-mean forecast North Atlantic Oscillation. This approach greatly improves decadal predictions of winter climate for Europe and eastern North America. Predictions of Atlantic multidecadal variability are also improved, suggesting that the North Atlantic Oscillation is not driven solely by Atlantic multidecadal variability. Our results highlight the need to understand why the signal-to-noise ratio is too small in current climate models, and the extent to which correcting this model error would reduce uncertainties in regional climate change projections on timescales beyond a decade.
In this paper, we have evaluated the Southern Ocean (SO) heat flux feedback in a fully coupled model and for the first time examined how this feedback evolves in response to global warming. The model broadly captures the observed characteristics of heat flux feedback over the SO. The heat flux tends to damp SST anomalies over the SO and thus the feedback is negative. In a warmer climate, the negative heat flux feedback in the SO, contributed mainly from turbulent component, becomes stronger. The turbulent feedback in the present day is primarily balanced by the upper boundary that strongly depends on background SST and wind and the thermal adjustment of boundary layer to SST anomalies. It is found that this balance shifts a little bit under global warming scenario. The upper limit increases in a warmer climate due to warm SST responses. The thermal adjustment of boundary layer becomes weaker in a warmer climate because of decreased atmospheric background heat convergence. The mean Deacon Cell transports anomalous heat caused by the greenhouse gas effect northward, leading to a heat convergence along the northern flank of the Antarctic Circumpolar Current. Constrained by the energy, the atmospheric northward heat transport has a corresponding divergence north of 55°S. This anomalous heat transport divergence favors air heat leaving away from 55°S–35°S regions to the polar region, leads to smaller air temperature tendencies in the local compared to the present day and therefore leads to a weakened thermal adjustment of boundary layer. Therefore, both changes in the upper limit and thermal adjustment of boundary layer contribute positively to the enhanced turbulent feedback in a warmer climate. The dynamic component due to changes in wind tends to compensate these two positive contributors, but its magnitude is too small to become a dominant factor.
Observed Southern Ocean surface cooling and sea-ice expansion over the past several decades are inconsistent with many historical simulations from climate models. Here we show that natural multidecadal variability involving Southern Ocean convection may have contributed strongly to the observed temperature and sea-ice trends. These observed trends are consistent with a particular phase of natural variability of the Southern Ocean as derived from climate model simulations. Ensembles of simulations are conducted starting from differing phases of this variability. The observed spatial pattern of trends is reproduced in simulations that start from an active phase of Southern Ocean convection. Simulations starting from a neutral phase do not reproduce the observed changes, similarly to the multimodel mean results of CMIP5 models. The long timescales associated with this natural variability show potential for skilful decadal prediction.
The relationship between the North Atlantic Oscillation (NAO) and Atlantic sea surface temperature (SST) variability is investigated using models and observations. Coupled climate models are used in which the ocean component is either a fully dynamic ocean, or a slab ocean with no resolved ocean heat transport. On time scales less than ten years NAO variations drive a tripole pattern of SST anomalies in both observations and models. This SST pattern is a direct response of the ocean mixed layer to turbulent surface heat flux anomalies associated with the NAO.
On time scales longer than ten years a similar relationship exists between the NAO and the tripole pattern of SST anomalies in models with a slab ocean. A different relationship exists both for the observations and for models with a dynamic ocean. In these models a positive (negative) NAO anomaly leads, after a decadal-scale lag, to a monopole pattern of warming (cooling) that resembles the Atlantic Multidecadal Oscillation (AMO), although with smaller than observed amplitudes of tropical SST anomalies. Ocean dynamics are critical to this decadal scale response in the models. The simulated Atlantic Meridional Overturning Circulation (AMOC) strengthens (weakens) in response to a prolonged positive (negative) phase of the NAO, thereby enhancing (decreasing) poleward heat transport, leading to broad scale warming (cooling).
We use additional simulations in which heat flux anomalies derived from observed NAO variations from 1901 to 2014 are applied to the ocean component of coupled models. We show that ocean dynamics allow models to reproduce important aspects of the observed AMO, mainly in the subpolar gyre.
Li, Shujun, Liping Zhang, and Lixin Wu, November 2017: Decadal potential predictability of upper ocean heat content over the twentieth century. Climate Dynamics, 49(9-10), DOI:10.1007/s00382-016-3513-9. Abstract
The statistical method, Average Predictability Time (APT) decomposition, is used in the present paper to estimate the decadal predictability of upper ocean heat content over the global ocean, North Pacific and North Atlantic, respectively. The twentieth century simulations from CMIP5 outputs are the main data sources in this study. On global scale, the leading predictable component is characterized by a warming trend over the majority of oceans, which is related to the anthropogenic forced response. The second predictable component has significant loadings in the North Atlantic, especially in the subtropical region, which originates from the Atlantic Multidecadal Oscillation (AMO) predictability. To separate interactions among different ocean basins, we further maximize APT in individual North Pacific and North Atlantic oceans. It is found that the second and the third predictable component in North Pacific are significantly correlated with the well-known North Pacific Gyre Oscillation mode and the Pacific Decadal Oscillation respectively. Upper limit prediction skill of these two components are on the order of 6 years. In contrast, the most predictable component derived from the North Atlantic features an AMO-like spatial structure with its prediction skill up to 18 years, while the basin mode due to global warming only exists as the third component. This indicates the interdecadal variability in the North Atlantic is strong enough to mask the anthropogenic climate signals. Furthermore, predictability in the real world is also investigated and compared with model results by using observation-based data.
The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated in the current paper using a coupled ocean–atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which leads to a warming of the Northern Hemisphere troposphere extending into the tropics. This induces an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This altered gradients leads to a poleward displacement of the SH westerly jet. The wind change over the SO then cools the SST at high latitudes by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote forcing from the North Atlantic.
This study explores the potential predictability of the Southern Ocean (SO) climate on decadal timescales as represented in the GFDL CM2.1 model using prognostic methods. We conduct perfect model predictability experiments starting from ten different initial states, and show potentially predictable variations of Antarctic bottom water formation (AABW) rates on time scales as long as twenty years. The associated Weddell Sea (WS) subsurface temperatures and Antarctic sea ice have comparable potential predictability as the AABW cell. The predictability of sea surface temperature (SST) variations over the WS and the SO is somewhat smaller, with predictable scales out to a decade. This reduced predictability is likely associated with stronger damping from air-sea interaction. As a complement to our perfect predictability study, we also make hindcasts of SO decadal variability using the GFDL CM2.1 decadal prediction system. Significant predictive skill for SO SST on multi-year time scales is found in the hindcast system. The success of the hindcasts, especially in reproducing observed surface cooling trends, is largely due to initializing the state of the AABW cell. A weak state of the AABW cell leads to cooler surface conditions and more extensive sea ice. Although there are considerable uncertainties regarding the observational data used to initialize the hindcasts, the consistency between the perfect model experiments and the decadal hindcasts at least gives us some indication as to where and to what extent skillful decadal SO forecasts might be possible.
The average predictability time (APT) method is used to identify the most predictable components of decadal sea surface temperature (SST) variations over the Southern Ocean (SO) in a 4000 year unforced control run of the GFDL CM2.1 model. The most predictable component shows significant predictive skill for periods as long as 20 years. The physical pattern of this variability has a uniform sign of SST anomalies over the SO, with maximum values over the Amundsen-Bellingshausen-Weddell Seas. Spectral analysis of the associated APT time series shows a broad peak on time scales of 70-120 years. This most predictable pattern is closely related to the mature phase of a mode of internal variability in the SO that is associated with fluctuations of deep ocean convection. The second most predictable component of SO SST is characterized by a dipole structure, with SST anomalies of one sign over the Weddell Sea and SST anomalies of the opposite sign over the Amundsen-Bellingshausen Seas. This component has significant predictive skill for periods as long as 6 years. This dipole mode is associated with a transition between phases of the dominant pattern of SO internal variability. The long time scales associated with variations in SO deep convection provide the source of the predictive skill of SO SST on decadal scales. These analyses suggest that if we could adequately initialize the SO deep convection in a numerical forecast model, the future evolution of SO SST and its associated climate impacts is potentially predictable.
Pronounced climate changes have occurred since the 1970s, including rapid loss of Arctic sea ice1, large-scale warming2 and increased tropical storm activity3 in the Atlantic. Anthropogenic radiative forcing is likely to have played a major role in these changes4, but the relative influence of anthropogenic forcing and natural variability is not well established. The above changes have also occurred during a period in which the North Atlantic Oscillation has shown marked multidecadal variations5. Here we investigate the role of the North Atlantic Oscillation in these rapid changes through its influence on the Atlantic meridional overturning circulation and ocean heat transport. We use climate models to show that observed multidecadal variations of the North Atlantic Oscillation can induce multidecadal variations in the Atlantic meridional overturning circulation and poleward ocean heat transport in the Atlantic, extending to the Arctic. Our results suggest that these variations have contributed to the rapid loss of Arctic sea ice, Northern Hemisphere warming, and changing Atlantic tropical storm activity, especially in the late 1990s and early 2000s. These multidecadal variations are superimposed on long-term anthropogenic forcing trends that are the dominant factor in long-term Arctic sea ice loss and hemispheric warming.
The impact of climate change on the Pacific Decadal Oscillation (PDO) is studied using a fully coupled climate model. The model results show that the PDO has a similar spatial pattern in altered climates, but its amplitude and time scale of variability change in response to global warming or cooling. In response to global warming the PDO amplitude is significantly reduced, with a maximum decrease over the Kuroshio-Oyashio-Extension (KOE) region. This reduction appears to be associated with a weakened meridional temperature gradient in the KOE region. In addition, reduced variability of North Pacific wind stress, partially due to reduced air-sea feedback, also helps to weaken the PDO amplitude by reducing the meridional displacements of the subtropical and subpolar gyre boundaries. In contrast, the PDO amplitude increases in response to global cooling.
In our control simulations the model PDO has an approximately bi-decadal peak. In a warmer climate the PDO timescale becomes shorter, changing from approximately 20 years to approximately 12 years. In a colder climate the timescale of the PDO increases to approximately 34 years. Physically, global warming (cooling) enhances (weakens) ocean stratification. The increased (decreased) ocean stratification acts to increase (reduce) the phase speed of internal Rossby waves, thereby altering the timescale of the simulated PDO.
Zhang, Liping, and Thomas L Delworth, August 2016: Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL model. Journal of Geophysical Research: Oceans, 121(8), DOI:10.1002/2016JC011790. Abstract
The impact of Antarctic bottom water (AABW) formation on the Weddell Gyre and its northward propagation characteristics are studied using a 4000-yr long control run of the GFDL CM2.1 model as well as sensitivity experiments. In the control run, the AABW cell and Weddell Gyre are highly correlated when the AABW cell leads the Weddell Gyre by several years, with an enhanced AABW cell corresponding to a strengthened Weddell Gyre and vice versa. An additional sensitivity experiment shows that the response of the Weddell Gyre to AABW cell changes is primarily attributed to interactions between the AABW outflow and ocean topography, instead of the surface wind stress curl and freshwater anomalies. As the AABW flows northward, it encounters topography with steep slopes that induce strong downwelling and negative bottom vortex stretching. The anomalous negative bottom vortex stretching induces a cyclonic barotropic streamfunction over the Weddell Sea, thus leading to an enhanced Weddell Gyre. The AABW cell variations in the control run have significant meridional coherence in density space. Using passive dye tracers, it is found that the slow propagation of AABW cell anomalies south of 35oS corresponds to the slow tracer advection time scale. The dye tracers escape the Weddell Sea through the western limb of the Weddell Gyre and then go northwestward to the Argentine Basin through South Sandwich Trench and Georgia Basin. This slow advection by deep ocean currents determines the AABW cell propagation speed south of 35oS. North of 35oS the propagation speed is determined both by advection in the deep western boundary current and through Kelvin waves.
Yi, Daling L., Liping Zhang, and L Wu, September 2015: On the mechanisms of decadal variability of the North Pacific gyre oscillation over the twentieth century. Journal of Geophysical Research: Oceans, 120(9), DOI:10.1002/2014JC010660. Abstract
The decadal variability of the North Pacific gyre oscillation (NPGO) over the 20th century is examined from a long term integration of the Simple Ocean Data Assimilation (SODA) reanalysis. The NPGO is reflected by the second dominant pattern of sea surface height (SSH) variability in SODA, with a north-south dipole structure over the northeast Pacific. SSH anomalies in this region exhibit distinct decadal variability with a significant spectrum peak at approximately 18-yr. The upper-ocean heat budget reveals that this dipole structure associated with the NPGO is predominantly due to the anomalous Ekman pumping and Ekman advection induced by the surface wind. The NPGO mode in SODA reanalysis originates from atmosphere stochastic noise (North Pacific Oscillation) which has a meridional dipole pattern but no preferred timescale. The oceanic planetary wave, particularly the advective baroclinic mode, integration of atmospheric stochastic noise leads to a spatial resonance with preferred decadal time scale. The limitation of current study is also discussed.
Zhang, Liping, and Chuanhu Zhao, June 2015: Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. Journal of Advances in Modeling Earth Systems, 7(2), DOI:10.1002/2014MS000415. Abstract
Almost all of CMIP5 climate models show cold SST biases in the extratropical North Atlantic (ENA) and tropical North Atlantic (TNA) as well as in the North Pacific which are commonly linked with the weak simulated Atlantic meridional overturning circulation (AMOC). A weak AMOC and its associated reduced northward oceanic heat transport are associated with a cooling of the ENA Ocean, whereas the TNA cooling is attributable to both the weak AMOC and surface heat flux. The cold biases in the ENA and TNA have remote impacts on the SST bias in the North Pacific. Here we use coupled ocean-atmosphere model experiments to show the mechanisms and pathways by which the ENA and TNA affect the North Pacific. The model simulations demonstrate that the cooling SST bias in the North Pacific is largely due to the remote effect of the cooling SST bias in the ENA, while the remote impact of the TNA cooling SST bias is of secondary importance. The ENA cooling bias triggers the circum-global teleconnection via the Northern Hemisphere annular mode, producing a strengthening of the Aleutian low, an enhancement of the southward Ekman and Oyashio cold advection, and thus a cooling SST in the North Pacific. In contrast, the TNA cooling produces a surface high extending to the eastern tropical North Pacific, inducing the northeasterly wind anomalies north, northerly cross-equatorial wind anomalies, and northwesterly wind anomalies south of the equator. This C-shape wind anomaly pattern generates an SST warming in the tropical southeastern Pacific, which eventually leads to an SST warming in the tropical central and western Pacific by the wind-evaporation-SST feedback. The tropical Pacific warming in turn leads to an SST cooling in the North Pacific by the Pacific North American teleconnection pattern. This article is protected by copyright. All rights reserved.
Zhang, Liping, and Thomas L Delworth, October 2015: Analysis of the Characteristics and Mechanisms of the Pacific Decadal Oscillation in a Suite of Coupled Models from the Geophysical Fluid Dynamics Laboratory. Journal of Climate, 28(19), DOI:10.1175/JCLI-D-14-00647.1. Abstract
North Pacific decadal oceanic and atmospheric variability is examined in a suite of coupled climate models developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The models have ocean horizontal resolutions ranging from 1° to 0.1°, and atmospheric horizontal resolutions ranging from 200km to 50km. In all simulations the dominant pattern of decadal-scale sea surface temperature (SST) variability over the North Pacific is similar to the observed Pacific Decadal Oscillation (PDO). Simulated SST anomalies in the Kuroshio Oyashio Extension (KOE) region exhibit a significant spectral peak at approximately 20 years.
We use sensitivity experiments to show that: (i) the simulated PDO mechanism involves extratropical air-sea interaction and oceanic Rossby wave propagation, (ii) the oscillation can exist independent of interactions with the Tropics, but that such interactions can enhance the PDO, and (iii) ocean to atmosphere feedback in the extratropics is critical for establishing the approximately 20-year timescale of the PDO. The spatial pattern of the PDO can be generated from atmospheric variability that occurs independently of ocean-atmosphere feedback, but the existence of a spectral peak depends on active air-sea coupling. The specific interdecadal timescale is strongly influenced by the propagation speed of oceanic Rossby waves in the subtropical and subpolar gyres, as they provide a delayed feedback to the atmosphere.
The simulated PDO has a realistic association with precipitation variations over North America, with a warm phase of the PDO generally associated with positive precipitation anomalies over regions of the western United States. The seasonal dependence of this relationship is also reproduced by the model.
Hong, L, and Liping Zhang, et al., June 2014: Linkage between the Pacific Decadal Oscillation and the low frequency variability of the Pacific Subtropical Cell. Journal of Geophysical Research: Oceans, 119(6), DOI:10.1002/2013JC009650. Abstract
The decadal variability of Pacific Subtropical Cell (STC) and its linkages with the Pacific Decadal Oscillation (PDO) are investigated in the present study based on a Simple Ocean Data Assimilation (SODA 2.2.4). It is found that, on decadal time scales, the western boundary and interior pycnocline transports are anticorrelated and the variation of the interior component is more significant, which is consistent with previous studies. The decadal variability of STC in the Northern Hemisphere is found to be strongly associated with PDO. Associated with a positive (negative) phase of PDO, the relaxation (acceleration) of the northeast trades slows down (spins up) the STC within a few years through baroclinic adjustment in conjunction with the subduction of the cold (warm) mixed-layer anomalies in the extratropics. The cold (warm) water is then injected into the thermocline and advected further southwestward to the tropics along the isopycnal surfaces, leading to the slowdown (spin-up) of STC due to zonal pressure gradient change at low latitude. Along with the STC weakening (strengthening), a significant warming (cold) anomaly appears in the tropics and it is advected to the midlatitude by the Kuroshio and North Pacific currents, thus feeding back to the atmosphere over the North Pacific. In contrast to the Northern Hemisphere, it is found the STC in the south only passively responds to the PDO. The mechanism found here highlights the role of the STC advection of extratropical anomalies to the tropics and horizontal gyre advection of the tropical anomalies to the extratropics in decadal variability of the STC and PDO.
Zhang, Liping, et al., December 2014: Remote effect of the model cold bias in the tropical North Atlantic on the warm bias in the tropical southeastern Pacific. Journal of Advances in Modeling Earth Systems, 6(4), DOI:10.1002/2014MS000338. Abstract
Most state-of-the-art climate models show significant systematic biases in the tropical southeastern Pacific (SEP) and tropical North Atlantic (TNA). These biases manifest themselves as the sea surface temperature (SST) in the SEP being too warm and the SST in the TNA being too cold. That is, as the cold SST biases appear in the TNA, the warm SST biases also occur in the SEP. This indicates that if climate models cannot succeed in simulating the TNA variability, they will also fail at least partially in the SEP. Our coupled model experiments show that the cold SST bias in the TNA results in a weakening of the Hadley-type circulation from the TNA to the SEP. This meridional circulation reduces the South Pacific subtropical anticyclone and the associated subsidence, which in turn leads to a reduction of low clouds, a weakening of the easterly trade wind, and thus an increase of the warm SST bias in the SEP.