We present the System for High‐resolution prediction on Earth‐to‐Local Domains (SHiELD), an atmosphere model developed by the Geophysical Fluid Dynamics Laboratory (GFDL) coupling the nonhydrostatic FV3 Dynamical Core to a physics suite originally taken from the Global Forecast System. SHiELD is designed to demonstrate new capabilities within its components, explore new model applications, and to answer scientific questions through these new functionalities. A variety of configurations are presented, including short‐to‐medium‐range and subseasonal‐to‐seasonal prediction, global‐to‐regional convective‐scale hurricane and contiguous U.S. precipitation forecasts, and global cloud‐resolving modeling. Advances within SHiELD can be seamlessly transitioned into other Unified Forecast System or FV3‐based models, including operational implementations of the Unified Forecast System. Continued development of SHiELD has shown improvement upon existing models. The flagship 13‐km SHiELD demonstrates steadily improved large‐scale prediction skill and precipitation prediction skill. SHiELD and the coarser‐resolution S‐SHiELD demonstrate a superior diurnal cycle compared to existing climate models; the latter also demonstrates 28 days of useful prediction skill for the Madden‐Julian Oscillation. The global‐to‐regional nested configurations T‐SHiELD (tropical Atlantic) and C‐SHiELD (contiguous United States) show significant improvement in hurricane structure from a new tracer advection scheme and promise for medium‐range prediction of convective storms.
We use the fvGFS model developed at the Geophysical Fluid Dynamics Laboratory (GFDL) to demonstrate the potential of the upcoming United States Next Generation Global Prediction System for hurricane prediction. The fvGFS retrospective forecasts initialized with the European Centre for Medium‐Range Weather Forecasts (ECMWF) data showed much‐improved track forecasts for the 2017 Atlantic hurricane season compared to the best performing ECMWF operational model. The fvGFS greatly improved the ECMWF's poor track forecast for Hurricane Maria (2017). For Hurricane Irma (2017), a well‐predicted case by the ECMWF model, the fvGFS produced even lower 5‐day track forecast errors. The fvGFS also showed better intensity prediction than both the United States and the ECMWF operational models, indicating the robustness of its numerical algorithms.
A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core (FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction's Global Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core, FV3, has been selected for National Oceanic and Atmospheric Administration’s Next Generation Global Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, which brings a great opportunity for the unification of weather and climate prediction systems.
The performance of tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operational GFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction, the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern Pacific Ocean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysics scheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besides track and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFS and operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed to investigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hit ratios, lower false alarm ratios and longer genesis lead times than those of the GFS model in most of the TC basins.
We present a new global‐to‐regional model, cfvGFS, able to explicitly (without parameterization) represent convection over part of the earth. This model couples the Geophysical Fluid Dynamics Laboratory Finite‐Volume Cubed‐Sphere Dynamical Core (FV3) to the Global Forecast System (GFS) physics and initial conditions, augmented with a six‐category microphysics and a modified planetary boundary layer scheme. We examine the characteristics of cfvGFS on a 3‐km continental United States domain nested within a 13‐km global model. The nested cfvGFS still has good hemispheric skill comparable to or better than the operational GFS, while supercell thunderstorms, squall lines, and derechos are explicitly‐represented over the refined region. In particular, cfvGFS has excellent representations of fine‐scale updraft helicity fields, an important proxy for severe weather forecasting. Precipitation biases are found to be smaller than in uniform‐resolution global models and competitive with operational regional models; the 3‐km domain also improves upon the global models in 2‐m temperature and humidity skill. We discuss further development of cfvGFS and the prospects for a unified global‐to‐regional prediction system.
The variable-resolution version of a Finite-Volume Cubed-Sphere Dynamical Core (FV3)-based global model improves the prediction of convective-scale features while maintaining skillful global forecasts.
The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a new variable-resolution global model with the ability to represent convective-scale features that serves as a prototype of the Next Generation Global Prediction System (NGGPS). The goal of this prediction system is to maintain the skill in large-scale features while simultaneously improving the prediction skill of convectively-driven mesoscale phenomena. This paper demonstrates the new capability of this model in convective-scale prediction relative to the current operational Global Forecast System (GFS). This model uses the stretched-grid functionality of the Finite-Volume Cubed-Sphere Dynamical Core (FV3) to refine the global 13-km uniform-resolution model down to 4-km convection-permitting resolution over the Contiguous United States (CONUS), and implements the GFDL single-moment six-category cloud microphysics to improve the representation of moist processes.
Statistics gathered from two years of simulations by the GFS and select configurations of the FV3-based model are carefully examined. The variable-resolution FV3-based model is shown to possess global forecast skill comparable with that of the operational GFS while quantitatively improving skill and better representing the diurnal cycle within the high-resolution area compared to the uniform mesh simulations. Forecasts of the occurrence of extreme precipitation rates over the Southern Great Plains are also shown to improve with the variable-resolution model. Case studies are provided of a squall line and a hurricane to demonstrate the effectiveness of the variable-resolution model to simulate convective-scale phenomena.
Bell, Michael M., R A Ballard, M Bauman, A M Foerster, A Frambach, K A Kosiba, W-C Lee, Shannon L Rees, and J Wurman, December 2015: The Hawaiian Educational Radar Opportunity (HERO). Bulletin of the American Meteorological Society, 96(12), DOI:10.1175/BAMS-D-14-00126.1. Abstract
A National Science Foundation sponsored Educational Deployment of a Doppler on Wheels radar called the Hawaiian Educational Radar Opportunity (HERO) was conducted on O‘ahu from 21 October to 13 November 2013. This was the first ever deployment of a dual-polarimetric X-band (3-cm) research radar in Hawai‘i. A unique fine-resolution radar and radiosonde dataset was collected during 16 intensive observing periods through a collaborative effort between undergraduate and graduate students at University of Hawai‘i at Mānoa and the Honolulu National Weather Service. HERO was the field component of MET 628 “Radar Meteorology”, with 12 enrolled graduate students who collected and analyzed the data as part of the course. Extensive community outreach was conducted, including participation in a School of Ocean and Earth Science and Technology Open House event with over 7,500 visitors from local K-12 schools and the public. An overview of the HERO project and highlights of the most interesting tropical rain and cloud observations are described. Phenomena observed by the radar include cumulus clouds, trade wind showers, deep convective thunderstorms, and a widespread heavy rain event associated with a cold frontal passage. Detailed cloud and precipitation structures and their interactions with O‘ahu terrain, unique dual-polarimetric signatures, and the implications for the dynamics and microphysics of tropical convection are presented.