We document the configuration and emergent simulation features from the Geophysical Fluid Dynamics Laboratory (GFDL) OM4.0 ocean/sea‐ice model. OM4 serves as the ocean/sea‐ice component for the GFDL climate and Earth system models. It is also used for climate science research and is contributing to the Coupled Model Intercomparison Project version 6 Ocean Model Intercomparison Project (CMIP6/OMIP). The ocean component of OM4 uses version 6 of the Modular Ocean Model (MOM6) and the sea‐ice component uses version 2 of the Sea Ice Simulator (SIS2), which have identical horizontal grid layouts (Arakawa C‐grid). We follow the Coordinated Ocean‐sea ice Reference Experiments (CORE) protocol to assess simulation quality across a broad suite of climate relevant features. We present results from two versions differing by horizontal grid spacing and physical parameterizations: OM4p5 has nominal 0.5° spacing and includes mesoscale eddy parameterizations and OM4p25 has nominal 0.25° spacing with no mesoscale eddy parameterization.
MOM6 makes use of a vertical Lagrangian‐remap algorithm that enables general vertical coordinates. We show that use of a hybrid depth‐isopycnal coordinate reduces the mid‐depth ocean warming drift commonly found in pure z* vertical coordinate ocean models. To test the need for the mesoscale eddy parameterization used in OM4p5, we examine the results from a simulation that removes the eddy parameterization. The water mass structure and model drift are physically degraded relative to OM4p5, thus supporting the key role for a mesoscale closure at this resolution.
In this two-part paper, a description is provided of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). This version, with roughly 100km horizontal resolution and 33 levels in the vertical, contains an aerosol model that generates aerosol fields from emissions and a “light” chemistry mechanism designed to support the aerosol model but with prescribed ozone. In Part I, the quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode – with prescribed sea surface temperatures (SSTs) and sea ice distribution – is described and compared with previous GFDL models and with the CMIP5 archive of AMIP simulations. The model's Cess sensitivity (response in the top-of-atmosphere radiative flux to uniform warming of SSTs) and effective radiative forcing are also presented. In Part II, the model formulation is described more fully and key sensitivities to aspects of the model formulation are discussed, along with the approach to model tuning.
In Part II of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part I. Part II provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
The period 2000–2010 may be considered the decade when Earth system modeling came of age. Systematic ESM-based international scientific campaigns, such as the IPCC, are recognized as central elements both in scientific research to understand the workings of the climate system, as well as to provide reasoned and fact-based guidance to global governance systems, on how to deal with the planetary scale challenge of climate change.
The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical-system component of earth-system models and models for decadal prediction in the near-term future, for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model.
Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud-droplet activation by aerosols, sub-grid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with eco-system dynamics and hydrology.
Most basic circulation features in AM3 are simulated as realistically, or more so, than in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks and the intensity distributions of precipitation remain problematic, as in AM2.
The last two decades of the 20th century warm in CM3 by .32°C relative to 1881-1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of .56°C and .52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol cloud interactions, and its warming by late 20th century is somewhat less realistic than in CM2.1, which warmed .66°C but did not include aerosol cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud-aerosol interactions to limit greenhouse gas warming in a way that is consistent with observed global temperature changes.
The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.
Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.
The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic.
Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).
Manuscript received 8 December 2004, in final form 18 March 2005
for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented. The atmosphere model, known as AM2, includes a new gridpoint dynamical core, a prognostic cloud scheme, and a multispecies aerosol climatology, as well as components from previous models used at GFDL. The land model, known as LM2, includes soil sensible and latent heat storage, groundwater storage, and stomatal resistance. The performance of the coupled model AM2–LM2 is evaluated with a series of prescribed sea surface temperature (SST) simulations. Particular focus is given to the model's climatology and the characteristics of interannual variability related to E1 Niño– Southern Oscillation (ENSO).
One AM2–LM2 integration was performed according to the prescriptions of the second Atmospheric Model Intercomparison Project (AMIP II) and data were submitted to the Program for Climate Model Diagnosis and Intercomparison (PCMDI). Particular strengths of AM2–LM2, as judged by comparison to other models participating in AMIP II, include its circulation and distributions of precipitation. Prominent problems of AM2– LM2 include a cold bias to surface and tropospheric temperatures, weak tropical cyclone activity, and weak tropical intraseasonal activity associated with the Madden–Julian oscillation.
An ensemble of 10 AM2–LM2 integrations with observed SSTs for the second half of the twentieth century permits a statistically reliable assessment of the model's response to ENSO. In general, AM2–LM2 produces a realistic simulation of the anomalies in tropical precipitation and extratropical circulation that are associated with ENSO.